题目内容
如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为( )
A. B. 4 C. 4.5 D. 5
如果1-x是负数,那么x的取值范围是( )
A. x>0 B. x<0 C. x>1 D. x<1
已知⊙O1的半径为4,⊙O2的半径为R,若⊙O1与⊙O2相切,且O1O2=10,则R的值为_____.
某文化用品商店出售书包和文具盒,书包每个定价40元,文具盒每个定价10元,该店制定了两种优惠方案:方案一,买一个书包赠送一个文具盒;方案二:按总价的九折付款,购买时,顾客只能选用其中的一种方案.某学校为给学生发奖品,需购买5个书包,文具盒若干(不少于5个).设文具盒个数为x(个),付款金额为y(元).
(1)分别写出两种优惠方案中y与x之间的关系式;
方案一:y1= ;方案二:y2= .
(2)若购买20个文具盒,通过计算比较以上两种方案中哪种更省钱?
(3)学校计划用540元钱购买这两种奖品,最多可以买到 个文具盒(直接回答即可).
某一次函数的图象经过点(﹣2,1),且y轴随x的增大而减小,则这个函数的表达式可能是_____.(只写一个即可)
估计的值是( ).
A.在3与4之间 B.在4与5之间 C.在5与6之间 D.在6与7之间
如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A和点B(1,0),与y轴相交于点C(0,3).
(1)求抛物线的解析式和顶点D的坐标;
(2)求证:∠DAB=∠ACB;
(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.
计算: ______.
如图,等腰△ABC三个顶点在⊙O上,直径AB=12,P为弧BC上任意一点(不与B,C重合),直线CP交AB延长线与点Q,2∠PAB+∠PDA=90°,下列结论:①若∠PAB=30°,则弧BP的长为;②若PD//BC,则AP平分∠CAB;③若PB=BD,则,④无论点P在弧上的位置如何变化,CP·CQ为定值. 正确的是___________.