题目内容
已知2a-1的算术平方根是3,3a+b+4的立方根是2,求a-b的平方根.
小明家需要用钢管做防盗窗,按设计要求,其中需要长为 0.8m,2.5m 且粗细相同的钢管分别为 100 根,32 根,并要求这些用料不能是焊接而成的.现钢材市场的这种规格的钢管每根为 6m.
(1)试问一根 6 米长的钢管有哪些裁剪方法呢?请填写下空(余料作废).
方法 1:当只裁剪长为 0.8 米的用料时,最多可剪 根;
方法 2:当先剪下 1 根 2.5 米的用料时,余下部分最多能剪 0.8 米长的用料 根:
方法 3:当先剪下 2 根 2.5 米的用料时,余下部分最多能剪 0.8 米长的用料 根.
(2)联合用(1)中的方法 2 和方法 3 各裁剪多少根 6 米长的钢管,才能刚好得到所需要的相应数量的材料?
(3)小明经过探究发现:如果联合(1)中的二种或三种裁剪方法,还有多种方案能刚好得 到所需要的相应数量的材料,并且所需要 6m 长的钢管与(2)中根数相同,试帮小明说明理由,并写出一种与(2)不同的裁剪方案.
如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.
⑴求抛物线的函数表达式;
⑵求直线BC的函数表达式;
⑶点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.①当线段PQ=AB时,求tan∠CED的值;②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.
如图,在矩形ABCD中,AB=6, BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为( )
A. 1 B. 2 C. 3 D. 4
细心观察下图,认真分析各式,然后解答问题.
()2+1=2,S1=;
()2+1=3,S2=;
()2+1=4,S3=.
(1)请用含n(n是正整数)的等式表示上述式子的变化规律;
(2)推算出OA10的长;
(3)求出S12+S22+S32+…+S102的值.
已知a,b为两个连续的整数,且a<<b,则a+b=________.
实数a在数轴上的位置如图所示,则+化简后为( )
A. 7 B. ﹣7 C. 2a﹣15 D. 无法确定
如图,在△ABC中,有一点P在线段AC上移动.若AB=AC=5,BC=6,则BP的最小值为________.
与﹣3互为倒数的是( )
A. ﹣ B. ﹣3 C. D. 3