题目内容
如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P´(点P´不在y轴上),连接PP´,P´A,P´C.设点P的横坐标为a.(1)当b=3时,
①求直线AB的解析式;
②若点P′的坐标是(﹣1,m),求m的值;
(2)若点P在第一象限,记直线AB与P´C的交点为D.当P´D:DC=1:3时,求a的值;
(3)是否同时存在a,b,使△P´CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.
(1)①y=
x+3②
(2)
(3)
或
解析:
解:(1)①设直线AB的解析式为y=kx+3,
把x=﹣4,y=0代入得:﹣4k+3=0,
∴k=
,
∴直线的解析式是:y=
x+3, ……3分
②由已知得点P的坐标是(1,m),
∴m=
×1+3=
; ……4分
(2)∵PP′∥AC,
△PP′D∽△ACD,
∴
=
,即
=
,
∴a=
; ……6分
(3)以下分三种情况讨论.
①当点P在第一象限时,
1)若∠AP′C=90°,P′A=P′C(如图1)
过点P′作P′H⊥x轴于点H.

∴PP′=CH=AH=P′H=
AC.
∴2a=
(a+4)
∴a=
∵P′H=PC=
AC,△ACP∽△AOB
∴
=
=
,即
=
,
∴b=2 ……8分
2)若∠P′AC=90°,P′A=CA (如图2)

则PP′=AC
∴2a=a+4
∴a=4
∵P′A=PC=AC,△ACP∽△AOB
∴
=
=1,即
=1
∴b=4 ……10分
3)若∠P′CA=90°,
则点P′,P都在第一象限内,这与条件矛盾.
∴△P′CA不可能是以C为直角顶点的等腰直角三角形.

②当点P在第二象限时,∠P′CA为钝角(如图3),此时△P′CA不可能是等腰直角三角形;
③当P在第三象限时,∠P′CA为钝角(如图4),此时△P′CA不可能是等腰直角三角形.
∴所有满足条件的a,b的值为
或
……12分
(1)利用待定系数法即可求得函数的解析式;
(2)把(-1,m)代入函数解析式即可求得m的值;可以证明△PP′D∽△ACD,根据相似三角形的对应边的比相等,即可求解;
(3)点P在第一像限,若使△P'CA为等腰直角三角则∠AP′C=90°或∠P′AC=90°或∠P′CA=90°就三种情况分别讨论求出出所有满足要求的a的值即可.
解:(1)①设直线AB的解析式为y=kx+3,
把x=﹣4,y=0代入得:﹣4k+3=0,
∴k=
∴直线的解析式是:y=
②由已知得点P的坐标是(1,m),
∴m=
(2)∵PP′∥AC,
△PP′D∽△ACD,
∴
∴a=
(3)以下分三种情况讨论.
①当点P在第一象限时,
1)若∠AP′C=90°,P′A=P′C(如图1)
过点P′作P′H⊥x轴于点H.
∴PP′=CH=AH=P′H=
∴2a=
∴a=
∵P′H=PC=
∴
∴b=2 ……8分
2)若∠P′AC=90°,P′A=CA (如图2)
则PP′=AC
∴2a=a+4
∴a=4
∵P′A=PC=AC,△ACP∽△AOB
∴
∴b=4 ……10分
3)若∠P′CA=90°,
则点P′,P都在第一象限内,这与条件矛盾.
∴△P′CA不可能是以C为直角顶点的等腰直角三角形.
②当点P在第二象限时,∠P′CA为钝角(如图3),此时△P′CA不可能是等腰直角三角形;
③当P在第三象限时,∠P′CA为钝角(如图4),此时△P′CA不可能是等腰直角三角形.
∴所有满足条件的a,b的值为
(1)利用待定系数法即可求得函数的解析式;
(2)把(-1,m)代入函数解析式即可求得m的值;可以证明△PP′D∽△ACD,根据相似三角形的对应边的比相等,即可求解;
(3)点P在第一像限,若使△P'CA为等腰直角三角则∠AP′C=90°或∠P′AC=90°或∠P′CA=90°就三种情况分别讨论求出出所有满足要求的a的值即可.
练习册系列答案
相关题目