题目内容
先化简,再求值:(1-)÷,其中a=-1.
如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是_______.
如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.
如图,通过计算大正方形的面积,可以验证的公式是( )
A.
B.
C.
D.
发现来源于探究。小亮进行数学探究活动,作边长为a的正方形ABCD和边长边b的正方形AEFG(a>b),开始时点E在AB上,如图1,将正方形AEFG绕点A逆时针方向旋转。
(1)如图2,小亮将正方形AEFG绕点A顺时针方向旋转,连接BE、DG,请证明:△ADG≌△ABE;
(2)如图3,小亮将正方形AEFG绕点A顺时针方向旋转,连接BE、DG,当点G恰好落在线段BE上,且a=3,b=2时,请你帮他求此时DG的长。
(3)如图4,小亮旋转正方形AEFG,当点E在DA的延长线上时,连接BF、DF,若FG平分∠BFD,请你帮他求a:b的值.
从点A(2,-3)、B(-2,-3)、C(2,3)。D(1,-6)、E(3,-2)中随机取一点,恰好在函数y=-的图象上的概率是___________。
下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③三角形的中位线平行于第三边且等于第三边的一半;④多边形的外角和是360o;⑤圆既是轴对称图形,又是中心对称图形。其中真命题的个数是( )
A. 1 B. 2 C. 3 D. 4
平行四边形ABCD中,∠ABC的角平分线BE将边AD分成长度为5cm和6cm的两部分,则平行四边形ABCD的周长为__________________cm.
把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的信息,或可以求出一些不规则图形的面积.
(1)如图1所示,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为 .
(2)若图1中每块小长方形的面积为12cm2,四个正方形的面积和为50 cm2,试求图中所有裁剪线(虚线部分)长之和.
(3)将图2中边长为a和b的正方形拼在一起,B,C,G三点在同一条直线上,连接BD和BF,若这两个正方形的边长满足a+b=10,ab=16,请求出阴影部分的面积.