题目内容
【题目】如图,点A,E,F,C在一条直线上,若将△DEC的边EC沿AC方向平移,平移过程中始终满足下列条件:AE=CF,DE⊥AC于点E,BF⊥AC于点F,且AB=CD.则当点E,F不重合时,BD与EF的关系是______.
![]()
【答案】互相平分
【解析】
由已知可推出AE+EF=CF+EF,DE⊥AC于E,BF⊥AC于F推出∠DEC=∠BFA=90°,AB=CD,所以推出△ABF≌△CDE,则DE=BF,所以证得△DOE≌△BOF,则得:OE=OF,OB=OD.
∵AE=CF, 点E,F不重合,
∴AE+EF=CF+EF,即AF=CE,
又∵DE⊥AC,BF⊥AC,
∴∠DEC=∠BFA=90°,
又∵AB=CD,
∴Rt△ABF≌Rt△CDE(HL),
∴DE=BF,
又∠DOE=∠BOF,
∴△DOE≌△BOF,
∴OE=OF,OB=OD,
∴BD和EF互相平分,
故答案为:互相平分.
练习册系列答案
相关题目