题目内容
如图,△ABC的面积为S,在BC上有点A′,且BA′:A′C=m(m>0);在CA的延长线有点B′,且CB′:AB′=n(n>1);在AB的延长线有点C′,且AC′:BC′=k(k>1).则S△A′B′C′=______.

连接BB′,C′C,则S△A′B′C′=S△A′B′B+S△A′BC′+S△BB′C′,
∵BA′:A′C=m,CB′:AB′=n,AC′:BC′=k,
∴B′A:AC=1:(n-1),BA′:A′C=m:1,C′B:BA=1:(k-1),
∴
| S△C′BA′ |
| S△C′BC |
| m |
| m+1 |
∴S△C′BA′=
| m |
| m+1 |
同理S△C′BC=
| 1 |
| K |
∴S△C′BA′=
| m |
| m+1 |
| 1 |
| k |
同理:S△B′C′B=
| 1 |
| k-1 |
| 1 |
| k-1 |
| 1 |
| n-1 |
S△B′BA′=
| m |
| m+1 |
| m |
| m+1 |
| n |
| n-1 |
∴①+②+③得:S△A′B′C′=S△C′BA′+S△B′C′B+S△B′BA′=
| mnk+1 |
| (m+1)(n-1)(k-1) |
故答案为:
| mnk+1 |
| (m+1)(n-1)(k-1) |
练习册系列答案
相关题目