题目内容
【题目】如图,在△ABC中,∠CBD、∠BCE是△ABC的外角,BP平分∠ABC,CP平分∠ACB,BQ平分∠CBD,CQ平分∠BCE.
(1)∠PBQ的度数是 ,∠PCQ的度数是 ;
(2)若∠A=70°,求∠P和∠Q的度数;
(3)若∠A=α,则∠P= ,∠Q= (用含α的代数式表示).
![]()
【答案】(1)90°、90°;(2)125°,55°;(3)90°+
α、90°﹣
α.
【解析】
(1)由角平分线知∠PBC=
∠ABC、∠QBC=
∠DBC,由∠ABC+∠DBC=180°知∠PBQ=∠PBC+∠QBC=
(∠ABC+∠DBC)=90°,同理可得∠PCQ的度数;
(2)由∠P=180°﹣∠PBC﹣∠PCB=180°﹣
∠ABC﹣
∠ACB=180°﹣
(∠ABC+∠ACB)=180°﹣
(180°﹣∠A)可得∠P度数,由∠Q=180°﹣∠QBC﹣∠QCB=180°﹣
(180°﹣∠ABC)﹣
(180°﹣∠ACB)=
(∠ABC+∠ACB)=
(180°﹣∠A)可得∠Q度数;
(3)与(2)同理可得.
(1)∵BP平分∠ABC,CP平分∠ACB,BQ平分∠CBD,CQ平分∠BCE.
∴∠PBC=
∠ABC、∠QBC=
∠DBC、∠PCB=
∠ACB、∠QCB=
∠BCE,
∵∠ABC+∠DBC=180°、∠ACB+∠BCE=180°,
∴∠PBQ=∠PBC+∠QBC=
(∠ABC+∠DBC)=90°,
∠PCQ=∠PCB+∠QCB=
(∠ACB+∠BCE)=90°,
故答案为:90°、90°;
(2)∵∠PBC=
∠ABC、∠PCB=
∠ACB,
∴∠P=180°﹣∠PBC﹣∠PCB
=180°﹣
∠ABC﹣
∠ACB
=180°﹣
(∠ABC+∠ACB)
=180°﹣
(180°﹣∠A)
=180°﹣
(180°﹣70°)
=125°;
∵∠QBC=
∠ABC、∠QCB=
∠ACB,
∴∠Q=180°﹣∠QBC﹣∠QCB
=180°﹣
(180°﹣∠ABC)﹣
(180°﹣∠ACB)
=
(∠ABC+∠ACB)
=
(180°﹣∠A)
=
(180°﹣70°)
=55°.
(3)与(2)同理知∠P=180°﹣
(180°﹣∠A)=90°+
∠A=90°+
α,
∠Q=
(180°﹣∠A)=90°﹣
∠A=90°﹣
α,
故答案为:90°+
α、90°﹣
α.