题目内容
不等式的解集是( )
A. ﹣<x≤2 B. ﹣3<x≤2 C. x≥2 D. x<﹣3
如图,已知拋物线(k为常数,且k>0)与x轴的交点为A、B,与y轴的交点为C,经过点B的直线与抛物线的另一个交点为D.
(1)若点D的横坐标为x= -4,求这个一次函数与抛物线的解析式;
(2)若直线m平行于该抛物线的对称轴,并且可以在线段AB间左右移动,它与直线BD和抛物线分别交于点E、F,求当m移动到什么位置时,EF的值最大,最大值是多少?
(3)问原抛物线在第一象限是否存在点P,使得△APB∽△ABC?若存在,请求出这时k的值;若不存在,请说明理由.
已知一组数据2,6,5,2,4,则这组数据的中位数是__________.
某电冰箱厂每个月的产量都比上个月增长的百分数相同.已知该厂今年4月份的电冰箱产量为5万台,6月份比5月份多生产了1.2万台.
(1)求该厂今年产量的月平均增长率为多少?
(2)预计7月份的产量为多少万台?
如图,在△ABC中,AB≠AC.D、E分别为边AB、AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)
已知等腰三角形的两条边长分别是7和3,则下列四个数中,第三条边的长是( )
A. 8 B. 7 C. 4 D. 3
如图,△ABC中,∠ACB>∠ABC.
(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);
(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.
实验数据显示,一般成人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间x (时)的关系可近似地用二次函数y=-200x2+400x刻画;1.5时后(包括1.5时)y与x可近似地用反比例函数(k>0)刻画(如图所示).
(1)根据上述数学模型计算:喝酒后几时血液中的酒精含量达到最大值?最大值为多少
(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:30在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.
【答案】(1)喝酒后1时血液中的酒精含量达到最大值,最大值为200毫克/百毫升;(2)第二天早上7:45以后才可以驾驶,7:00时不能驾车去上班.
【解析】试题分析:首先将二次函数配方成顶点式,得出最大值;将x=5和y=45代入反比例函数解析式求出k的值;首先求出晚上20:00至第二天早上7:00一共有11小时,讲x=11代入反比例函数解析式求出y的值与20进行比较大小,得出答案.
试题解析:(1)①y=﹣200x2+400x=﹣200(x﹣1)2+200,
∴喝酒后1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);
②∵当x=5时,y=45,y=(k>0), ∴k=xy=45×5=225;
(2)不能驾车上班;
理由:∵晚上20:00到第二天早上7:00,一共有11小时,
∴将x=11代入y=,则y=>20, ∴第二天早上7:00不能驾车去上班.
考点:二次函数、反比例函数的实际应用.
【题型】解答题【结束】24
综合与探究:
如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A,B,C的坐标.
(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.
(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于( )
A. B. C. D.