题目内容
不等式组的解集在数轴上表示为( )
A. B.
C. D.
如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为,OP=1.求BC的长.
若关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是( )
A. -3<b<-2 B. -3<b≤-2 C. -3≤b≤-2 D. -3≤b<-2
小明、小华利用五一假期结伴游览某旅游景点,他们想测量景点内一条小河的宽度,如图,已知观测点C距离地面高度CH=40m,他们测得正前方河两岸A、B两点处的俯角分别为45°和30°,请计算出该处的河宽AB约为多少(结果精确到1m,参考数据: ≈1.414, ≈1.732).
如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,DE=3BE,点P,Q分别在BD,AD上,则AP+PQ的最小值为( )
A. B. C. D.
如图,、分别表示一种白炽灯和一种节能灯的费用(费用=灯的售价+电费,单位:元)与照明时间(小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样。
(1)根据图象分别求出、的函数关系式;
(2)当照明时间为多少时,两种灯的费用相等?
(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程)。
如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠EFG= 70º,求∠EGD的度数.
某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物,装卸货物共用45 min,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60 km/h,两车之间的距离y(km)与货车行驶时间x(h)之间的函数图象如图所示,有下列结论:①快递车从甲地到乙地的速度为100 km/h;②甲、乙两地之间的距离为120 km;③图中点B的坐标为(3.75,75);④快递车从乙地返回时的速度为90 km/h.其中正确的是( )
A. ①②③ B. ②③④ C. ①③④ D. ①③
如图,已知△ABC中,AB=BC=AC,∠ABC=∠BCA=∠CAB=60°,M、N分别在△ABC的BC、AC边上,且BM=CN,AM、BN交于点Q.求证:∠BQM=60°.
(1)请你完成这道思考题;
(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:
①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?
②若将题中的点M、N分别移动到BC、CA的延长线上,是否仍能得到∠BQM=60°?
请你作出判断,在下列横线上填写“是”或“否”:①_____;②_____.