题目内容
反比例函数图像经过点(2,-3),则它的函数表达式是 .
(本小题满分8分)已知:在平面直角坐标系xOy中,给出如下定义:线段AB及点P,任取AB上一点Q,线段PQ长度的最小值称为点P到线段AB的距离,记作d(P→AB).
(1)如图l,已知C点的坐标为(1,0),D点的坐标为(3,0),求点P(2,1)到线段CD的距离d(P→CD)为____;
(2)已知:线段EF:y=x(0≤x≤3),点G到线段时的距离d(P→EF)为,且点G的横坐标为l,在图2中画出图,试求点G的纵坐标.
设、是方程的两实数根,则=_ ___.
(本题满分10分)如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于点E、F,作BH⊥AF于点H,交AC于点G,连接GE、GF.
(1)求证:△OAE≌△OBG;
(2)求证:四边形BFGE是菱形.
如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在轴、轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置.若OB=,tan∠BOC=,则则OA′的长为__ __.
如图,直线l和双曲线()交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC的面积为、△BOD的面积为、△POE的面积为,则( )
A. B. C. D.
-2的绝对值是 ( )
A.2 B.-2 C. D.
用科学记数法表示0.000031的结果是 .
(本题满分12分)问题提出:平面内不在同一条直线上的三点确定一个圆.那么平面内的四点(任意三点均不在同一直线上),能否在同一个圆呢?
初步思考:设不在同一条直线上的三点A、B、C确定的圆为⊙O.
(1)当C、D在线段AB的同侧时,
如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是____________;
如图②,若点D在⊙O内,此时有∠ACB____________∠ADB;
如图③,若点D在⊙O外,此时有∠ACB____________∠ADB.(填“=”、“>”或“<”);
由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件:____________.
类比学习:(2)仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.
如图④,此时有________________________,
如图⑤,此时有________________________,
如图⑥,此时有________________________.
由上面的探究,请用文字语言直接写出A、B、C、D四点在同一个圆上的条件:
________________________________________________________________________.
拓展延伸:(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线?
已知:如图,AB是⊙O的直径,点C在⊙O上.
求作:CN⊥AB.
作法:①连接CA, CB;
②在上任取异于B、C的一点D,连接DA,DB;
③DA与CB相交于E点,延长AC、BD,交于F点;
④连接F、E并延长,交直径AB于M;
⑤连接D、M并延长,交⊙O于N.连接CN.则CN⊥AB.
请按上述作法在图④中作图,并说明CN⊥AB的理由.(提示:可以利用(2)中的结论)