题目内容
【题目】我们知道,对任意一个正整数n都可以进行这样的分解:n=p
q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p
q是n的最佳分解,并规定:F(n)=
,例如12可以分解为1
12,2
6或3
4,因为12-1>6-2>4-3,所以3
4是最佳分解,所以F(n)=
。
(1)如果一个正整数
是另外一个正整数b的平方,我们称正整数a是完全平方数,求证:对任意一个完全平方数m,总有F(m)=1
(2)如果一个两位正整数t,t=10x+y (1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们就称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值。
【答案】(1)见解析;(2)F(t)的最大值为![]()
【解析】试题分析:(1)根据题意可设
由最佳分解定义可得![]()
(2)根据“吉祥数”定义知(10y+x)(10x+y)=9(yx)=18,即y=x+2,结合
的范围可得2位数的“吉祥数”,求出每个“吉祥数”
的值.即可求出最大值.
试题解析:(1)对任意一个完全平方数m,设
(n为正整数),
∵|nn|=0,
∴n×n是m的最佳分解,
∴对任意一个完全平方数m,
(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,
∵t为“吉祥数”,
∴t′t=(10y+x)(10x+y)=9(yx)=18,
∴y=x+2,
∵
x,y为自然数,
∴“吉祥数”有:13,24,35,46,57,68,79,
∴所有“吉祥数”中F(t)的值为:
的最大值为
【题目】某商店需要购进A.B两种商品共160件,其进价和售价如表:
A | B | |
进价(元/件) | 15 | 35 |
售价(元/件) | 20 | 45 |
(1)当A.B两种商品分别购进多少件时,商店计划售完这批商品后能获利1100元;
(2)若商店计划购进A种商品不少于66件,且销售完这批商品后获利多于1260元,请你帮该商店老板预算有几种购货方案?获利最大是多少元?