题目内容

(2013•福州质检)如图,半径为2的⊙E交x轴于A、B,交y轴于点C、D,直线CF交x轴负半轴于点F,连接EB、EC.已知点E的坐标为(1,1),∠OFC=30°.
(1)求证:直线CF是⊙E的切线;
(2)求证:AB=CD;
(3)求图中阴影部分的面积.
分析:(1)首先过点E作EG⊥y轴于点G,由点E的坐标为(1,1),可得EG=1.继而可求得∠ECG的度数,又由∠OFC=30°,∠FOC=90°,可求得∠FCE=∠OCF+∠ECG=90°.
(2)首先过点E作EH⊥x轴于点H,易证得Rt△CEG≌Rt△BEH,又由EH⊥AB,EG⊥CD,则可证得AB=CD;
(3)连接OE,可求得OC=
3
+1与∠OEB+∠OEC=210°,继而可求得阴影部分的面积.
解答:解:(1)过点E作EG⊥y轴于点G,
∵点E的坐标为(1,1),
∴EG=1.
在Rt△CEG中,sin∠ECG=
EG
CE
=
1
2

∴∠ECG=30°.                       
∵∠OFC=30°,∠FOC=90°,
∴∠OCF=180°-∠FOC-∠OFC=60°.   
∴∠FCE=∠OCF+∠ECG=90°.
即CF⊥CE.
∴直线CF是⊙E的切线.                

(2)过点E作EH⊥x轴于点H,
∵点E的坐标为(1,1),
∴EG=EH=1.                         
在Rt△CEG与Rt△BEH中,
CE=BE
EG=EH

∴Rt△CEG≌Rt△BEH(HL).
∴CG=BH.                           
∵EH⊥AB,EG⊥CD,
∴AB=2BH,CD=2CG.
∴AB=CD.                           

(3)连接OE,
在Rt△CEG中,CG=
CE2-EG2
=
3

∴OC=
3
+1.                        
同理:OB=
3
+1.                    
∵OG=EG,∠OGE=90°,
∴∠EOG=∠OEG=45°.
又∵∠OCE=30°,
∴∠OEC=180°-∠EOG-∠OCE=105°.
同理:∠OEB=105°.                  
∴∠OEB+∠OEC=210°.
∴S阴影=
210×π×22
360
-
1
2
×(
3
+1)×1×2=
3
-
3
-1.
点评:此题考查了切线的判定、三角函数、勾股定理以及扇形的面积.此题难度较大,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网