题目内容
关于的分式方程解为,则常数的值为( )
A. B. C. D.
某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.
(3分)(2015•泉州)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是( )
如图,O为坐标原点,△OAB是等腰直角三角形,∠OAB=90°,点B的坐标为,将该三角形沿轴向右平移得到,此时点的坐标为,则线段OA在平移过程中扫过部分的图形面积为______.
已知一系列直线 分别与直线相交于一系列点,设的横坐标为,则对于式子 ,下列一定正确的是( )
A. 大于1 B. 大于0 C. 小于-1 D. 小于0
如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a-3)2+|b+4|=0,S四边形AOBC=16.
(1)求C点坐标;
(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.
(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.
如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A 1 B 1 C 1 D 1 ,第2次平移将长方形A 1 B 1 C 1 D 1 沿A 1 B 1 的方向向右平移5个单位,得到长方形A 2 B 2 C 2 D 2 …,第n次平移将长方形 沿 的方向平移5个单位,得到长方形(n>2),则长为_______________.
如图,△ABC中,∠C=30°,将△ABC绕点A顺时针旋转50°得到△ADE,AE与BC交于F,则∠AFB=________°.
如图,已知抛物线y=-x2+bx+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3).
(1)求抛物线的解析式及顶点M的坐标;
(2)在抛物线的对称轴上找到点P,使得△PAC的周长最小,并求出点P的坐标.