题目内容
分析:(1)由图,已知两点,可根据待定系数法列方程,求函数关系式;
(2)旅客可免费携带行李,即y=0,代入由(1)求得的函数关系式,即可知质量为多少.
(2)旅客可免费携带行李,即y=0,代入由(1)求得的函数关系式,即可知质量为多少.
解答:解:(1)设一次函数y=kx+b,
∵当x=60时,y=6,当x=90时,y=10,
∴
解之,得
,
∴所求函数关系式为y=
x-2(x≥15);
(2)当y=0时,
x-2=0,所以x=15,
故旅客最多可免费携带15kg行李.
∵当x=60时,y=6,当x=90时,y=10,
∴
|
|
∴所求函数关系式为y=
| 2 |
| 15 |
(2)当y=0时,
| 2 |
| 15 |
故旅客最多可免费携带15kg行李.
点评:本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.注意自变量的取值范围不能遗漏.
练习册系列答案
相关题目