题目内容
10.(1)2a-3b•3a-2b-3=$\frac{6}{{a}^{5}{b}^{2}}$;(2)(-2xy-2)3=-8$\frac{{x}^{3}}{{y}^{6}}$;
(3)(3m-2n)2•3m-4n-5=$\frac{27}{{m}^{8}{n}^{3}}$.
分析 (1)根据单项式的乘法,可得负整数指数幂,根据负整数指数幂与正整数指数幂互为倒数,可得答案;
(2)根据积的乘方,可得负整数指数幂,根据负整数指数幂与正整数指数幂互为倒数,可得答案;
(3)根据积的乘方,可得单项式的乘法,根据单项式的乘法,可得负整数指数幂,根据负整数指数幂与正整数指数幂互为倒数,可得答案
解答 解:(1)原式=6a-5b-2=$\frac{6}{{a}^{5}{b}^{2}}$;
(2)原式=-8x3y-6=-8$\frac{{x}^{3}}{{y}^{6}}$;
(3)原式=9m-4n2•3m-4n-5=27m-8n-3=$\frac{27}{{m}^{8}{n}^{3}}$;
故答案为:$\frac{6}{{a}^{5}{b}^{2}}$;-8$\frac{{x}^{3}}{{y}^{6}}$;$\frac{27}{{m}^{8}{n}^{3}}$.
点评 本题考查了负整数指数幂,利用了积的乘方,单项式的乘法,负整数指数幂与正整数指数幂互为倒数.
练习册系列答案
相关题目
5.化简$\frac{{y}^{2}}{2x-y}$+$\frac{4{x}^{2}}{y-2x}$的结果是( )
| A. | y-2x | B. | -2x-y | C. | 2x-y | D. | y+2x |
2.下列方程组中,解为$\left\{\begin{array}{l}{x=1}\\{y=1}\\{z=2}\end{array}\right.$的是( )
| A. | $\left\{\begin{array}{l}{x+y+z=4}\\{2x+y-z=1}\\{3x+2y-4z=-3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x-y-z=0}\\{z+y-x=1}\\{2x+y-2x=5}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{x+y=4}\\{y+z=5}\\{x+z=6}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{2x+3y-z=5}\\{x+y+z=4}\\{x-y+2z=2}\end{array}\right.$ |