题目内容
分析:连接OC、OD,则△OCD和△OEF都是等腰三角形,有∠OCD=∠ODC,∠OEF=∠OFE,
由三角形的外角等于与它不相邻的两个内角和,得∠AOC=∠BOD,再由在同圆中相等的圆心角对的弧相等得,AC=BD.
由三角形的外角等于与它不相邻的两个内角和,得∠AOC=∠BOD,再由在同圆中相等的圆心角对的弧相等得,AC=BD.
解答:证明:连接OC、OD,
∵OC=OD,OE=OF,
∴∠OCD=∠ODC,∠OEF=∠OFE,
∠OEF=∠C+∠COA=∠D+∠BOD=∠OFE,
∴∠AOC=∠BOD,
∴AC=BD.
∵OC=OD,OE=OF,
∴∠OCD=∠ODC,∠OEF=∠OFE,
∠OEF=∠C+∠COA=∠D+∠BOD=∠OFE,
∴∠AOC=∠BOD,
∴AC=BD.
点评:本题利用了等边对等角,三角形的外角与内角的关系和在同圆中相等的圆心角对的弧相等求解.
练习册系列答案
相关题目