题目内容
计算下列各题.
(1)(2a-1b2)2•(-a2b3)•(3ab-2)3;
(2)(
-
)÷
;
(3)
+
÷x;
(4)
÷(a-
).
(1)(2a-1b2)2•(-a2b3)•(3ab-2)3;
(2)(
| x |
| x-2 |
| x |
| x+2 |
| 4x |
| 2-x |
(3)
| x2-1 |
| x2-2x+1 |
| x2-2x |
| x-2 |
(4)
| a2+a |
| a-1 |
| a |
| a-1 |
分析:(1)首先利用积的乘方以及幂的乘方法则计算,然后利用单项式的乘法法则计算即可;
(2)首先通分计算括号内的式子,然后把除法转化为乘法,进行约分即可;
(3)首先把每个分式进行约分,然后通分相减;
(4)首先通分计算括号内的式子,然后把除法转化为乘法,进行约分即可.
(2)首先通分计算括号内的式子,然后把除法转化为乘法,进行约分即可;
(3)首先把每个分式进行约分,然后通分相减;
(4)首先通分计算括号内的式子,然后把除法转化为乘法,进行约分即可.
解答:解:(1)原式=4a-2b4•(-a2b3)•27a3b-6
=-108a3b;
(2)原式=
•
=
•
=-
;
(3)原式=
+
•
=
+1
=
;
(4)原式=
÷
=
÷
=
•
=
.
=-108a3b;
(2)原式=
| x(x+2)-x(x-2) |
| (x-2)(x+2) |
| 2-x |
| 4x |
=
| 4x |
| (x-2)(x+2) |
| 2-x |
| 4x |
=-
| 1 |
| x+2 |
(3)原式=
| (x+1)(x-1) |
| (x-1)2 |
| x(x-2) |
| x-2 |
| 1 |
| x |
=
| x+1 |
| x-1 |
=
| 2x |
| x-1 |
(4)原式=
| a(a+1) |
| a-1 |
| a(a-1)-a |
| a-1 |
=
| a(a+1) |
| a-1 |
| a(a-2) |
| a-1 |
=
| a(a+1) |
| a-1 |
| a-1 |
| a(a-2) |
=
| a+1 |
| a-2 |
点评:本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.
练习册系列答案
相关题目