题目内容
(1)当∠A=50°时,求∠P的度数;
(2)当∠1=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(3)当∠1=
| 1 |
| 3 |
| 1 |
| 3 |
(4)当∠1=
| 1 |
| n |
| 1 |
| n |
分析:(1)由已知BP、CP分别是∠ABC与∠ACB的平分线,可推出∠P=180°-∠1-∠2=180°-
(∠ABC+∠ACB)=180°-
(180°-∠A)=90°+
∠A;
(2)成立;证明方法同(1);
(3)当∠1=
∠ABC;∠2=
∠ACB时,∠P=180°-∠1-∠2=180°-
(∠ABC+∠ACB)=180°-
(180°-∠A)=120°+
∠A;
(4)当∠1=
∠ABC,∠2=
∠ACB时,仿照(3)的分析,直接得出结论.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)成立;证明方法同(1);
(3)当∠1=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
(4)当∠1=
| 1 |
| n |
| 1 |
| n |
解答:解:(1)∵BP、CP分别是∠ABC与∠ACB的平分线,
∴∠P=180°-∠1-∠2
=180°-
(∠ABC+∠ACB)
=180°-
(180°-∠A)=90°+
∠A=115°;
(2)成立;
理由:∠P=180°-∠1-∠2
=180°-
(∠ABC+∠ACB)
=180°-
(180°-∠A)=90°+
∠A;
(3)由三角形内角和定理,得
∠P=180°-∠1-∠2
=180°-
(∠ABC+∠ACB)
=180°-
(180°-∠A);
(4)∠P=180°-
(180°-∠A).
∴∠P=180°-∠1-∠2
=180°-
| 1 |
| 2 |
=180°-
| 1 |
| 2 |
| 1 |
| 2 |
(2)成立;
理由:∠P=180°-∠1-∠2
=180°-
| 1 |
| 2 |
=180°-
| 1 |
| 2 |
| 1 |
| 2 |
(3)由三角形内角和定理,得
∠P=180°-∠1-∠2
=180°-
| 1 |
| 3 |
=180°-
| 1 |
| 3 |
(4)∠P=180°-
| 1 |
| n |
点评:本题考查了三角形内角和定理的灵活运用能力.
练习册系列答案
相关题目