题目内容


已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:

(1)△AEF≌△CDE;

(2)△ABC为等边三角形.


 证明:(1)∵BF=AC,AB=AE(已知)

∴FA=EC(等量加等量和相等).

∵△DEF是等边三角形(已知),

∴EF=DE(等边三角形的性质).

又∵AE=CD(已知),

∴△AEF≌△CDE(SSS).

 

(2)由△AEF≌△CDE,得∠FEA=∠EDC(对应角相等),

∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换),

△DEF是等边三角形(已知),

∴∠DEF=60°(等边三角形的性质),

∴∠BCA=60°(等量代换),

由△AEF≌△CDE,得∠EFA=∠DEC,

∵∠DEC+∠FEC=60°,

∴∠EFA+∠FEC=60°,

又∠BAC是△AEF的外角,

∴∠BAC=∠EFA+∠FEC=60°,

∴△ABC中,AB=BC(等角对等边).

∴△ABC是等边三角形(等边三角形的判定).


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网