题目内容
如图,在△ABC中,∠C=36°,将△ABC绕点A逆时针旋转60°得到△AED,AD与BC交于点F,则∠AFC的度数为( )
A.84º B.80º C.60º D. 90º
分别以下列五组数为一个三角形的边长:①6、8、10;②13、12、5;③1、2、3;④3.5、4.5、5.5;⑤8、10、12,其中能够组成直角三角形的有( )
A、4组 B、3组 C、2组 D、1组
函数中自变量x的取值范围是 .
计算:,并求当,b=1时原式的值.
二次函数y=ax2+bx+c(a,b,c为常数,且a<0)的图象经过点(﹣1,1),(4,﹣4).下列结论:(1)<0;(2)当x>1时,y的值随x值的增大而减小;(3)是方程ax2+(b+1)x+c=0的一个根;(4)当﹣1<x<4时,ax2+(b+1)x+c>0.其中正确的个数为( )
A.1个 B.2个 C.3个 D.4个
如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ,当△CQE的面积为3时,求点Q的坐标;
(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
先化简(1-)÷,并求当x满x2-6=5x时该代数式的值.
把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).
(1)、在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论;(要有辅助线哟!)
(2)、连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)、在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的,若存在,求出此时x值;若不存在,说明理由。
一家商店把某商品按标价的九折出售仍可获利15%,若该商品的进价是35元,若设标价为x元,则可列得方程( )
A. B.
C. D.