题目内容
如图,⊙O是△ABC的外接圆,∠A=30°,AB是⊙O的直径,过点C作⊙O的切线,交AB延长线于D,CD=3
cm,

(1)求⊙O的直径。
(2)若动点M以3cm/s的速度从点A出发沿AB方向运动。同时点N以1.5cm/s的速度从B点出发沿BC方向运动。设运动的时间为t(0≤t≤2),连结MN,当t为何值时△BMN为Rt△?并求此时该三角形的面积?
(1)求⊙O的直径。
(2)若动点M以3cm/s的速度从点A出发沿AB方向运动。同时点N以1.5cm/s的速度从B点出发沿BC方向运动。设运动的时间为t(0≤t≤2),连结MN,当t为何值时△BMN为Rt△?并求此时该三角形的面积?
(1)6cm
(2)
(1)解:∵AB是⊙O的直径.
∴∠ACB=90° ……………………(0.5')
又∠A=30°
∴∠ABC=60° ………………………(1')
连接OC,因CD切⊙O于C,则∠OCD=90° …………(2')
在△OBC中
∵OB=OC,∠ABC=60°
∴∠OCB=60°
∴∠BCD=30° …………………………………(2.5')
又∠OBC=∠BCD+∠D
∴∠D=30° …………………………………………(3')
∴AC=CD=3
在Rt△ABC中,cosA=
∴AB=
(2)△BMN中,①当∠BNM=90°时,cos∠MBC=
即cos60°=
此时BM=3 BN=1.5 MN=
∴S△BMN=
②当∠NMB=90°时,cos∠MBC=
即cos60°=
此时BM=
∴S△BMN=
练习册系列答案
相关题目