ÌâÄ¿ÄÚÈÝ
£¨2012•áéÖÝһ죩Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=ax2+bx+c¾¹ý A£¨0£¬4£©£¬B£¨4£¬0£©£¬C£¨-1£¬0£©Èýµã£®¹ýµãA×÷
´¹Ö±ÓÚyÖáµÄÖ±Ïßl£®ÔÚÅ×ÎïÏßÉÏÓÐÒ»¶¯µãP£¬¹ýµãP×÷Ö±ÏßPQƽÐÐÓÚyÖá½»Ö±ÏßlÓÚµãQ£®Á¬½ÓAP£®
£¨1£©ÇóÅ×ÎïÏßy=ax2+bx+cµÄ½âÎöʽ£»
£¨2£©ÊÇ·ñ´æÔÚµãP£¬Ê¹µÃÒÔA¡¢P¡¢QÈýµã¹¹³ÉµÄÈý½ÇÐÎÓë¡÷AOCÏàËÆ£¿Èç¹û´æÔÚ£¬ÇëÇó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©µ±µãPλÓÚÅ×ÎïÏßy=ax2+bx+cµÄ¶Ô³ÆÖáµÄÓҲ࣮Èô½«¡÷APQÑØAP¶ÔÕÛ£¬µãQµÄ¶ÔÓ¦µãΪµãM£®Çóµ±µãMÂäÔÚ×ø±êÖáÉÏʱֱÏßAPµÄ½âÎöʽ£®
£¨1£©ÇóÅ×ÎïÏßy=ax2+bx+cµÄ½âÎöʽ£»
£¨2£©ÊÇ·ñ´æÔÚµãP£¬Ê¹µÃÒÔA¡¢P¡¢QÈýµã¹¹³ÉµÄÈý½ÇÐÎÓë¡÷AOCÏàËÆ£¿Èç¹û´æÔÚ£¬ÇëÇó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©µ±µãPλÓÚÅ×ÎïÏßy=ax2+bx+cµÄ¶Ô³ÆÖáµÄÓҲ࣮Èô½«¡÷APQÑØAP¶ÔÕÛ£¬µãQµÄ¶ÔÓ¦µãΪµãM£®Çóµ±µãMÂäÔÚ×ø±êÖáÉÏʱֱÏßAPµÄ½âÎöʽ£®
·ÖÎö£º£¨1£©½«A£¨0£¬4£©£¬B£¨4£¬0£©£¬C£¨-1£¬0£©·Ö±ð´úÈëÅ×ÎïÏßy=ax2+bx+c£¬Áгö·½³Ì×飬¼´¿ÉÇó³öº¯Êý½âÎöʽ£®
£¨2£©µ±PÔÚlÏ·½Ê±£¬Áî¡÷AOC¡×¡÷AQP£¬¡÷AOC¡×¡÷PQA£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬ÁбÈÀýʽ£¬Çó³öµãµÄ×ø±ê£»µ±PÔÚlÉÏ·½Ê±£¬Áî¡÷AOC¡×¡÷AQP£¬¡÷AOC¡×¡÷PQA£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬ÁбÈÀýʽ£¬Çó³öµãµÄ×ø±ê£»
£¨3£©»³öº¯ÊýͼÐΣ¬ÀûÓÃÈý½ÇÐÎÏàËÆ£¬Çó³öPµã×ø±ê£¬ÔÙÀûÓôý¶¨ÏµÊý·¨Çó³öº¯Êý½âÎöʽ£®
£¨2£©µ±PÔÚlÏ·½Ê±£¬Áî¡÷AOC¡×¡÷AQP£¬¡÷AOC¡×¡÷PQA£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬ÁбÈÀýʽ£¬Çó³öµãµÄ×ø±ê£»µ±PÔÚlÉÏ·½Ê±£¬Áî¡÷AOC¡×¡÷AQP£¬¡÷AOC¡×¡÷PQA£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬ÁбÈÀýʽ£¬Çó³öµãµÄ×ø±ê£»
£¨3£©»³öº¯ÊýͼÐΣ¬ÀûÓÃÈý½ÇÐÎÏàËÆ£¬Çó³öPµã×ø±ê£¬ÔÙÀûÓôý¶¨ÏµÊý·¨Çó³öº¯Êý½âÎöʽ£®
½â´ð£º½â£º£¨1£©½«A£¨0£¬4£©£¬B£¨4£¬0£©£¬C£¨-1£¬0£©·Ö±ð´úÈëÅ×ÎïÏßy=ax2+bx+cµÃ£¬
£¬
½âµÃ
£¬º¯Êý½âÎöʽΪy=-x2+3x+4£®
£¨2£©PÔÚlÏ·½Ê±£¬Áî¢Ù¡÷AOC¡×¡÷AQP£¬
=
£¬
¼´
=
£¬
ÓÉÓÚy=-x2+3x+4£¬
ÔòÓÐ
=
£¬
½âµÃx=0£¨ÉáÈ¥£©»òx=
£¬´Ëʱ£¬y=
£¬Pµã×ø±êΪ£¨
£¬
£©£®
¢Ú¡÷AOC¡×¡÷PQA£¬
=
£¬
¼´
=
£¬
ÓÉÓÚy=-x2+3x+4£¬
ÔòÓÐ
=
£¬
½âµÃ£¬x=0£¨ÉáÈ¥£©»òx=7£¬Pµã×ø±êΪ£¨7£¬-24£©£®
¢ÛPÔÚlÉÏ·½Ê±£¬Áî¡÷AOC¡×¡÷PQA£¬
=
£¬
¼´
=
£¬
¡ßy=-x2+3x+4£¬
¡à
=
£¬
½âµÃ£¬x=0£¨ÉáÈ¥£©»òx=-1£¬Pµã×ø±êΪ£¨-1£¬0£©£®
¢Ü¡÷AOC¡×¡÷AQP£¬
=
£¬¼´
=
¡à
=
£¬
½âµÃ£¬x=0£¨ÉáÈ¥£©»òx=
£¬Pµã×ø±êΪ£¨
£¬
£©£®
£¨3£©Èçͼ£¨1£©£¬Èô¶Ô³ÆµãMÔÚyÖᣬÔò¡ÏPAQ=45¡ã£¬
ÉèAP½âÎöʽΪy=kx+b£¬Ôòk=1»ò-1£¬
µ±k=1ʱ£¬°ÑA£¨0£¬4£©´úÈëµÃy=x+4£¬
µ±k=-1ʱ£¬°ÑA£¨0£¬4£©´úÈëµÃy=-x+4£¬
´ËʱPÔÚ¶Ô³ÆÖáÓҲ࣬·ûºÏÌâÒ⣬
¡ày=x+4£¬»òy=-x+4£¬
ÉèµãQ£¨x£¬4£©£¬P£¨x£¬-x2+3x+4£©£¬ÔòPQ=x2-3x=PM£¬
¡ß¡÷AEM¡×¡÷MFP£®
ÔòÓÐ
=
£¬
¡ßME=OA=4£¬AM=AQ=x£¬PM=PQ=x2-3x£¬
¡à
=
£¬
½âµÃ£ºPF=4x-12£¬
¡àOM=£¨4x-12£©-x=3x-12£¬
Rt¡÷AOMÖУ¬Óɹ´¹É¶¨ÀíµÃOM2+OA2=AM2£¬
¡à£¨3x-12£©2+42=x2£¬½âµÃx1=4£¬x2=5£¬¾ùÔÚÅ×ÎïÏß¶Ô³ÆÖáµÄÓҲ࣬
¹ÊµãPµÄ×ø±êΪ£¨4£¬0£©»ò£¨5£¬-6£©£®
ÉèÒ»´Îº¯Êý½âÎöʽΪy=kx+b£¬
°Ñ£¨0£¬4£©£¨4£¬0£©·Ö±ð´úÈë½âÎöʽµÃ
£¬
½âµÃ
£¬
º¯Êý½âÎöʽΪy=-x+4£®
°Ñ£¨0£¬4£©£¨5£¬-6£©·Ö±ð´úÈë½âÎöʽµÃ
£¬
½âµÃ
£¬
º¯Êý½âÎöʽΪy=-2x+4£®
×ÛÉÏËùÊö£¬º¯Êý½âÎöʽΪy=x+4£¬y=-x+4£¬y=-2x+4£®
|
½âµÃ
|
£¨2£©PÔÚlÏ·½Ê±£¬Áî¢Ù¡÷AOC¡×¡÷AQP£¬
| AO |
| AQ |
| CO |
| PQ |
¼´
| 4 |
| x |
| 1 |
| 4-y |
ÓÉÓÚy=-x2+3x+4£¬
ÔòÓÐ
| 4 |
| x |
| 1 |
| 4-(-x2+3x+4) |
½âµÃx=0£¨ÉáÈ¥£©»òx=
| 13 |
| 4 |
| 51 |
| 16 |
| 13 |
| 4 |
| 51 |
| 16 |
¢Ú¡÷AOC¡×¡÷PQA£¬
| AQ |
| CO |
| PQ |
| AO |
¼´
| x |
| 1 |
| 4-y |
| 4 |
ÓÉÓÚy=-x2+3x+4£¬
ÔòÓÐ
| x |
| 1 |
| 4-(-x2+3x+4) |
| 4 |
½âµÃ£¬x=0£¨ÉáÈ¥£©»òx=7£¬Pµã×ø±êΪ£¨7£¬-24£©£®
¢ÛPÔÚlÉÏ·½Ê±£¬Áî¡÷AOC¡×¡÷PQA£¬
| AQ |
| CO |
| PQ |
| AO |
¼´
| x |
| 1 |
| y-4 |
| 4 |
¡ßy=-x2+3x+4£¬
¡à
| x |
| 1 |
| -x2+3x+4-4 |
| 4 |
½âµÃ£¬x=0£¨ÉáÈ¥£©»òx=-1£¬Pµã×ø±êΪ£¨-1£¬0£©£®
¢Ü¡÷AOC¡×¡÷AQP£¬
| AO |
| AQ |
| CO |
| PQ |
| 4 |
| x |
| 1 |
| y-4 |
¡à
| 4 |
| x |
| 1 |
| -x2+3x+4-4 |
½âµÃ£¬x=0£¨ÉáÈ¥£©»òx=
| 11 |
| 4 |
| 11 |
| 4 |
| 75 |
| 16 |
£¨3£©Èçͼ£¨1£©£¬Èô¶Ô³ÆµãMÔÚyÖᣬÔò¡ÏPAQ=45¡ã£¬
ÉèAP½âÎöʽΪy=kx+b£¬Ôòk=1»ò-1£¬
µ±k=1ʱ£¬°ÑA£¨0£¬4£©´úÈëµÃy=x+4£¬
µ±k=-1ʱ£¬°ÑA£¨0£¬4£©´úÈëµÃy=-x+4£¬
´ËʱPÔÚ¶Ô³ÆÖáÓҲ࣬·ûºÏÌâÒ⣬
¡ày=x+4£¬»òy=-x+4£¬
ÉèµãQ£¨x£¬4£©£¬P£¨x£¬-x2+3x+4£©£¬ÔòPQ=x2-3x=PM£¬
¡ß¡÷AEM¡×¡÷MFP£®
ÔòÓÐ
| AM |
| ME |
| MP |
| PF |
¡ßME=OA=4£¬AM=AQ=x£¬PM=PQ=x2-3x£¬
¡à
| x |
| 4 |
| x2-3x |
| PF |
½âµÃ£ºPF=4x-12£¬
¡àOM=£¨4x-12£©-x=3x-12£¬
Rt¡÷AOMÖУ¬Óɹ´¹É¶¨ÀíµÃOM2+OA2=AM2£¬
¡à£¨3x-12£©2+42=x2£¬½âµÃx1=4£¬x2=5£¬¾ùÔÚÅ×ÎïÏß¶Ô³ÆÖáµÄÓҲ࣬
¹ÊµãPµÄ×ø±êΪ£¨4£¬0£©»ò£¨5£¬-6£©£®
ÉèÒ»´Îº¯Êý½âÎöʽΪy=kx+b£¬
°Ñ£¨0£¬4£©£¨4£¬0£©·Ö±ð´úÈë½âÎöʽµÃ
|
½âµÃ
|
º¯Êý½âÎöʽΪy=-x+4£®
°Ñ£¨0£¬4£©£¨5£¬-6£©·Ö±ð´úÈë½âÎöʽµÃ
|
½âµÃ
|
º¯Êý½âÎöʽΪy=-2x+4£®
×ÛÉÏËùÊö£¬º¯Êý½âÎöʽΪy=x+4£¬y=-x+4£¬y=-2x+4£®
µãÆÀ£º±¾Ì⿼²éÁ˶þ´Îº¯Êý½âÎöʽµÄÇ󷨡¢¶þ´Îº¯Êý½âÎöʽ¡¢ÏàËÆÈý½ÇÐεÄÐÔÖÊ¡¢·Õ۱任¡¢´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽµÈ£¬ÌâÄ¿´í×Û¸´ÔÓ£¬Éæ¼°ÖªÊ¶Ãæ¹ã£¬Ö¼ÔÚ¿¼²éÂ߼˼άÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿