题目内容
已知f(x)=
,如f(1)表示x=1时,f(1)=
=
,f(2)表示x=2时,f(2)=
=
,求f(2012)+f(2011)+…+f(2)+f(1)+f(
)+…+f(
)+f(
)=
| 1 |
| 1+x |
| 1 |
| 1+1 |
| 1 |
| 2 |
| 1 |
| 1+2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2011 |
| 1 |
| 2012 |
2012
2012
.分析:先根据题意找出规律,根据此规律即可得出结论.
解答:解:∵f(1)=
=
,f(2)=
=
,
∴f(2012)=
,f(
)=
=
,f(
)=
=
,f(
)=
=
,
∴f(2)+f(
)=1,f(3)+f(
)=1,…,
∴f(2012)+f(2011)+…+f(2)+f(1)+f(
)+…+f(
)+f(
)=1+1+…+1=2012.
故答案为:2012.
| 1 |
| 1+1 |
| 1 |
| 2 |
| 1 |
| 1+2 |
| 1 |
| 3 |
∴f(2012)=
| 1 |
| 2013 |
| 1 |
| 2 |
| 1 | ||
1+
|
| 2 |
| 3 |
| 1 |
| 3 |
| 1 | ||
1+
|
| 3 |
| 4 |
| 1 |
| 2012 |
| 1 | ||
1+
|
| 1 |
| 2013 |
∴f(2)+f(
| 1 |
| 2 |
| 1 |
| 3 |
∴f(2012)+f(2011)+…+f(2)+f(1)+f(
| 1 |
| 2 |
| 1 |
| 2011 |
| 1 |
| 2012 |
故答案为:2012.
点评:本题考查的是分式的加减法,根据题意找出规律是解答此题的关键.
练习册系列答案
相关题目