题目内容
【题目】求函数
的最值.
【答案】①|b|>1,y极大值=
,y极小值=
;②|b|<1, y极大值=
;y极小值=
,③当ab>1时,y极大值=
;ab<1时,y极小值=
.
【解析】
将函数y=
化为关于x的一元二次方程:(1-y)x2+2(a-by)x+(1-y)=0,从而得出△≥0,将本题视为在△≥0的情况下求y的最值,然后讨论b的范围,在b不同范围内求出y的最值.
把 y=
化为关于x的二次方程(1﹣y)x2+2(a﹣by)x+(1﹣y)=0,
∵△=(b2﹣1)y2﹣2(ab﹣1)y+a2﹣1≥0,
①b2﹣1>0,即|b|>1,
∴y=
,可得y≤
或y≥
,
∴y极大值=
,
y极小值=
;
②b2﹣1<0,即|b|<1,则有
≤y≤
,
∴y极大值=
;
y极小值=
,
③b2﹣1=0,即|b|=1,得(ab-1)y≤
,
当ab>1时,y≤
,∴y极大值=
;
ab<1时,y≥
,∴y极小值=
.
练习册系列答案
相关题目