题目内容
先化简,再求值:,其中x满足方程:x2+x﹣6=0。
小王利用计算机设计了一个程序,输入和输出的数据如下表:
输入
…
1
2
3
4
5
输出
那么,当输入数据8时,输出的数据是( )
(A)(B)(C)(D)
如图5所示,是护士统计一位病人的体温变化图,这位病人中午12时的体温约为 .
如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠ABO的度数是( )。
A.
25°
B.
30°
C.
40°
D.
50°
如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2,图中阴影部分的面积为 。
已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm。
如图(2),△DEF从图(1)的位置出发,以1 cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动。当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移。DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5)。解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由。
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由。(图(3)供同学们做题使用)
某人骑车沿直线旅行,先前进了千米,休息了一段时间,又原路原速返回了千米(),再掉头沿原方向以比原速大的速度行驶,则此人离起点的距离与时间的函数关系的大致图象是( ).
如图,在□ABCD中,点M为边AD的中点,过点C作AB的垂线交AB于点E,连接ME.
(1)若AM=2AE=4,∠BCE=30°,求□ABCD的面积;
(2)若BC=2AB,求证:∠EMD=3∠MEA.
如图,双曲线与直线交于点M、N,并且点M的坐标为(1,3),点N的纵坐标为-1.根据图象信息可得关于x的方程的解为
A.-3,1 B.-3,3 C.-1,1 D.-1,3