题目内容
如图,在△ABC中,分别以AB、AC为边,向△ABC外作正三角形、正四边形、正五边形,BE、CD相交于点O.
①如图甲,求证:△ABE≌△ADC;
②探究:如图甲,∠BOC的度数为 ;如图乙,∠BOC的度数为 ;如图丙,∠BOC的度数为 .

①如图甲,求证:△ABE≌△ADC;
②探究:如图甲,∠BOC的度数为
考点:全等三角形的判定与性质
专题:
分析:①根据等边三角形的性质可以得出△DAC≌△BAE;
②根据三角形的外角与内角的关系就可以求出∠BOC的值,在图乙中,连结BD,然后用同样的方法证明△DAC≌△BAE,根据三角形外角与内角之间的关系就可以求出∠BOC的值,依此类推就可以得出当作五边形的时候就可以求出图丙∠BOC的值.
②根据三角形的外角与内角的关系就可以求出∠BOC的值,在图乙中,连结BD,然后用同样的方法证明△DAC≌△BAE,根据三角形外角与内角之间的关系就可以求出∠BOC的值,依此类推就可以得出当作五边形的时候就可以求出图丙∠BOC的值.
解答:①证明:如图甲,

∵△ABD和△AEC是等边三角,
∴AD=AB,AE=AC,∠DAB=∠EAC=∠ABD=∠ADB=60°,
∴∠DAB+∠BAC=∠EAC+∠BAC,
即∠DAC=∠BAE.
在△DAC和△BAE中,
,
∴△DAC≌△BAE(SAS).
②解:∵△DAC≌△BAE,
∴∠CDA=∠EBA.
∵∠BOC=∠BDO+∠OBD,
∴∠BOC=∠BDA+∠ABE+∠OBD,
∴∠BOC=∠BDA+∠ADC+∠OBA,
∴∠BOC=∠BDA+∠OBD=60°+60°=120°.
如图乙,连结BD,

∵四边形ABFD和四边形ACGE是正方形,
∴AB=AD,AE=AC,∠BAD=∠CAE=90°,∠BDA=∠DBA=45°,
∴∠BAD+∠DAE=∠CAE+∠DAE,
即∠BAE=∠CAD.
在△DAC和△BAE中,
,
∴△DAC≌△BAE(SAS),
∴∠CDA=∠EBA.
∵∠BOC=∠BDO+∠DBO,
∴∠BOC=∠BDA+∠ADO+∠DBO,
∴∠BOC=∠BDA+∠ABE+∠DBO,
∴∠BOC=∠BDA+∠DBA=45°+45°=90°;
如图丙,连结BD,

∵五边形ABHFD和五边形ACIGO是正五边形,
∴AB=AD,AE=AC,∠BAD=∠EAC=108°,
∴∠BAD+∠DAE=∠EAC+∠DAE,∠ABD=∠ADB=36°
∴∠BAE=∠DAC
在△BAE和△DAC中,
,
∴△BAE≌△DAC(SAS),
∴∠ABE=∠ADC.
∵∠BOC=∠OBD+∠BDO,
∴∠BOC=∠ADB+∠ADC+∠OBD,
∴∠BOC=∠ADB+∠ABE+∠OBD,
∴∠BOC=∠ADB+∠ABD=72°.
故答案为:120°;90° 72°.
∵△ABD和△AEC是等边三角,
∴AD=AB,AE=AC,∠DAB=∠EAC=∠ABD=∠ADB=60°,
∴∠DAB+∠BAC=∠EAC+∠BAC,
即∠DAC=∠BAE.
在△DAC和△BAE中,
|
∴△DAC≌△BAE(SAS).
②解:∵△DAC≌△BAE,
∴∠CDA=∠EBA.
∵∠BOC=∠BDO+∠OBD,
∴∠BOC=∠BDA+∠ABE+∠OBD,
∴∠BOC=∠BDA+∠ADC+∠OBA,
∴∠BOC=∠BDA+∠OBD=60°+60°=120°.
如图乙,连结BD,
∵四边形ABFD和四边形ACGE是正方形,
∴AB=AD,AE=AC,∠BAD=∠CAE=90°,∠BDA=∠DBA=45°,
∴∠BAD+∠DAE=∠CAE+∠DAE,
即∠BAE=∠CAD.
在△DAC和△BAE中,
|
∴△DAC≌△BAE(SAS),
∴∠CDA=∠EBA.
∵∠BOC=∠BDO+∠DBO,
∴∠BOC=∠BDA+∠ADO+∠DBO,
∴∠BOC=∠BDA+∠ABE+∠DBO,
∴∠BOC=∠BDA+∠DBA=45°+45°=90°;
如图丙,连结BD,
∵五边形ABHFD和五边形ACIGO是正五边形,
∴AB=AD,AE=AC,∠BAD=∠EAC=108°,
∴∠BAD+∠DAE=∠EAC+∠DAE,∠ABD=∠ADB=36°
∴∠BAE=∠DAC
在△BAE和△DAC中,
|
∴△BAE≌△DAC(SAS),
∴∠ABE=∠ADC.
∵∠BOC=∠OBD+∠BDO,
∴∠BOC=∠ADB+∠ADC+∠OBD,
∴∠BOC=∠ADB+∠ABE+∠OBD,
∴∠BOC=∠ADB+∠ABD=72°.
故答案为:120°;90° 72°.
点评:本题考查了等边三角形的性质的运用,正方形的性质的运用,正五边形的性质的运用及正n边形的性质的运用,全等三角形的判定及性质的运用,解答时根据正多边形的性质证明三角形全等是关键.
练习册系列答案
相关题目