题目内容

△ABC中,AC=5,中线AD=7,则AB边的取值范围是


  1. A.
    1<AB<29
  2. B.
    4<AB<24
  3. C.
    5<AB<19
  4. D.
    9<AB<19
D
分析:延长AD至E,使DE=AD,连接CE,使得△ABD≌△ECD,则将AB和已知线段转化到一个三角形中,进而利用三角形的三边关系确定AB的范围即可.
解答:解:延长AD至E,使DE=AD,连接CE.
在△ABD和△ECD中,BD=CD,∠ADB=∠EDC,AD=ED,
∴△ABD≌△ECD(SAS).
∴AB=CE.
在△ACE中,根据三角形的三边关系,得
AE-AC<CE<AE+AC,
即9<CE<19.
则9<AB<19.
故选D.
点评:解决此题的关键是通过倍长中线,构造全等三角形,把要求的线段和已知的线段放到一个三角形中,再根据三角形的三边关系进行计算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网