题目内容
如图2,四边形ABCD中,若∠A+∠B=180°,则∠C+∠D=____°.
如图是一个圆柱体和一个长方体组成的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图为( )
A. B. C. D.
先化简,再求值:,且x为满足-3<x<2的整数.
如图,AD是Rt△ABC斜边BC上的高.
(1)尺规作图:作∠C的平分线,交AB于点E,交AD于点F(不写作法,必须保留作图痕迹,标上应有的字母);
(2)在(1)的条件下,过F画BC的平行线交AC于点H,线段FH与线段CH的数量关系如何?请予以证明;
(3)在(2)的条件下,连结DE?DH.求证:ED⊥HD.
分解因式: =_____________________.
下列说法错误的是( )
A.必然事件发生的概率为1 B.不确定事件发生的概率为0.5
C.不可能事件发生的概率为0 D.随机事件发生的概率介于0和1之间
已知抛物线y=ax2+bx+c经过原点O及点A(﹣4,0)和点C(2,3).
(1)求抛物线的解析式及顶点坐标;
(2)如图1,设抛物线的对称轴与x轴交于点E,将直线y=2x沿y轴向下平移n个单位后得到直线l,若直线l经过C点,与y轴交于点D,且与抛物线的对称轴交于点F.若P是抛物线上一点,且PC=PF,求点P的坐标;
(3)如图2,将(1)中所求抛物线向上平移4个单位得到新抛物线,求新抛物线上到直线CD距离最短的点的坐标.(直接写出结果,不要解答过程)
下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是( )
如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平上)出发,沿斜面坡度为i=l: 的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53,求楼房AC的高度(参考数据:sin53=, cos53=, tan53=, ≈1.732,结果精确到0.1米)