题目内容
如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为__________cm.
![]()
3cm.
【考点】翻折变换(折叠问题);轴对称的性质.
【分析】由题意得AE=A′E,AD=A′D,故阴影部分的周长可以转化为三角形ABC的周长.
【解答】解:将△ADE沿直线DE折叠,点A落在点A′处,
所以AD=A′D,AE=A′E.
则阴影部分图形的周长等于BC+BD+CE+A′D+A′E,
=BC+BD+CE+AD+AE,
=BC+AB+AC,
=3cm.
故答案为:3.
【点评】折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.
练习册系列答案
相关题目
某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:
| 类型 价格 | 进价(元/盏) | 售价(元/盏) |
| A型 | 30 | 45 |
| B型 | 50 | 70 |
(1)设商场购进A型节能台灯为x盏,销售完这批台灯时可获利为y元,求y关于x的函数解析式;
(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?