题目内容
如图,若象棋盘上建立直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点( )
A. (1,-1) B. (-1,1) C. (-1,2) D. (1,-2)
某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.
(1)写出y与x之间的函数关系式和自变量x的取值范围;
(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?
如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿作测量工具,移动竹竿,使竹竿顶端与旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为( )m.
A. 8.8 B. 10 C. 12 D. 14
在直角坐标系中,已知点A (0,2),点.P (x,0) 为x轴上的一个动点,当x=_______时,线段PA的长度最小.
计算: ________
在△ABC中,a,b,c分别为∠A,∠B,∠C所对的边,我们称关于x的一元二次方程ax2+bx﹣c=0为“△ABC的☆方程”.根据规定解答下列问题:
(1)“△ABC的☆方程”ax2+bx﹣c=0的根的情况是 (填序号):①有两个相等的实数根;②有两个不相等的实数根;③没有实数根;
(2)如图,AD为⊙O的直径,BC为弦,BC⊥AD于E,∠DBC=30°,求“△ABC的☆方程”ax2+bx﹣c=0的解;
(3)若是“△ABC的☆方程”ax2+bx﹣c=0的一个根,其中a,b,c均为整数,且ac﹣4b<0,求方程的另一个根.
标有-3,-2,4的三张不透明的卡片,除正面写有不同的数字外,其余的值都相同,将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记为一次函数解析式y=kx+b的k值,第二次从余下的两张卡片中再抽取一张,上面标有的数字记为一次函数解析式的b值.
(1)写出k为负数的概率;
(2)求一次函数y=kx+b的图象不经过第一象限的概率.(用树状图或列举法求解)
已知 ,则= .
已知. 的整数部分是x, 小数部分是y,则x-y=_________