题目内容
函数y=kx的图象经过点(1,3),则实数k= .
已知二元一次方程组的解是,则(2a﹣1)(b+1)的值为( )
A.0 B.2 C.﹣2 D.6
4,﹣2,﹣4,3.5,0,.
如图,已知函数y=﹣x+3的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M.
(1)分别求出点A、点M的坐标;
(2)在x轴上有一动点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+3和y=x的图象于点C、D,且OB=2CD,求a的值.
如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是 .
下列计算正确的是( )
A.+= B.﹣=﹣1 C.×=6 D.÷=3
我县某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
要使分式有意义,那么x的取值范围是( )
A.x≠3 B.x≠3且x≠﹣3 C.x≠0且x≠﹣3 D.x≠﹣3
如图是我们学过的反比例函数图象,它的函数解析式可能是( )
A.y= B.y= C.y=- D.y=x