题目内容
如图,已知△ABC的三个顶点坐标分别为A(-4,0),B(1,0),C(-2,6).

(1)求经过点A,B,C三点的抛物线解析式.
(2)设直线BC交y轴于点E,连结AE,求证:AE=CE;
(3)设抛物线与y轴交于点D,连结AD交BC于点F,求证:以A,B,F为顶点的三角形与△ABC相似,并求:
.
(1)求经过点A,B,C三点的抛物线解析式.
(2)设直线BC交y轴于点E,连结AE,求证:AE=CE;
(3)设抛物线与y轴交于点D,连结AD交BC于点F,求证:以A,B,F为顶点的三角形与△ABC相似,并求:
(1)
;(2)证明见试题解析;(3)证明见试题解析,
.
试题分析:(1)利用待定系数发求解即可得出抛物线的解析式;
(2)求出直线BC的函数解析式,从而得出点E的坐标,然后分别求出AE及CE的长度即可证明出结论;
(3)求出AD的函数解析式,然后结合直线BC的解析式可得出点F的坐标,由题意得∠ABF=∠CBA,然后判断出
试题解析:(1)设函数解析式为:
可得
(2)设直线BC的函数解析式为y=kx+b,由题意得:
(3)相似.理由如下:设直线AD的解析式为y=kx+b,则
练习册系列答案
相关题目