ÌâÄ¿ÄÚÈÝ
£¨1£©¼ÆË㣺
-£¨
-1£©0+£¨-
£©-2-4cos30¡ã£»
£¨2£©»¯¼òÇóÖµ£º
¡Â£¨2+x-
£©£¬ÆäÖÐx=
£»
£¨3£©ÒÑÖªA={3£¬4}£¬B={3£¬6£¬9}£¬C={3£¬12}£®ÆäÖÐËüÃÇ·Ö±ð±íʾ°üº¬ÕâЩÏ߶γ¤¶ÈµÄ¼¯ºÏ£¬Èç¹û´Ó¼¯ºÏAÖÐËæ»úѡȡһ¸ö³¤¶È£¬´Ó¼¯ºÏBÖÐËæ»úѡȡһ¸ö³¤¶È£¬´Ó¼¯ºÏCÖÐËæ»úѡȡһ¸ö³¤¶È£¬ÇëÁбí»ò»Ê÷״ͼ»Ø´ðÏÂÁÐÎÊÌ⣺
¢ÙÒÔѡȡµÄÈý¸ö³¤¶ÈµÄÏß¶ÎΪ±ß£¬Äܹ¹³ÉÈý½ÇÐεĸÅÂÊÊǶàÉÙ£¿
¢ÚÒÔѡȡµÄÈý¸ö³¤¶ÈµÄÏß¶ÎΪ±ß£¬Äܹ¹³ÉµÈÑüÈý½ÇÐεĸÅÂÊÊǶàÉÙ£¿
¢ÛÒÔѡȡµÄÈý¸ö³¤¶ÈµÄÏß¶ÎΪ±ß£¬Äܹ¹³ÉµÈ±ßÈý½ÇÐεĸÅÂÊÊǶàÉÙ£¿
| 12 |
| 3 |
| 1 |
| 2 |
£¨2£©»¯¼òÇóÖµ£º
| x |
| x-2 |
| 4 |
| 2-x |
| 2 |
£¨3£©ÒÑÖªA={3£¬4}£¬B={3£¬6£¬9}£¬C={3£¬12}£®ÆäÖÐËüÃÇ·Ö±ð±íʾ°üº¬ÕâЩÏ߶γ¤¶ÈµÄ¼¯ºÏ£¬Èç¹û´Ó¼¯ºÏAÖÐËæ»úѡȡһ¸ö³¤¶È£¬´Ó¼¯ºÏBÖÐËæ»úѡȡһ¸ö³¤¶È£¬´Ó¼¯ºÏCÖÐËæ»úѡȡһ¸ö³¤¶È£¬ÇëÁбí»ò»Ê÷״ͼ»Ø´ðÏÂÁÐÎÊÌ⣺
¢ÙÒÔѡȡµÄÈý¸ö³¤¶ÈµÄÏß¶ÎΪ±ß£¬Äܹ¹³ÉÈý½ÇÐεĸÅÂÊÊǶàÉÙ£¿
¢ÚÒÔѡȡµÄÈý¸ö³¤¶ÈµÄÏß¶ÎΪ±ß£¬Äܹ¹³ÉµÈÑüÈý½ÇÐεĸÅÂÊÊǶàÉÙ£¿
¢ÛÒÔѡȡµÄÈý¸ö³¤¶ÈµÄÏß¶ÎΪ±ß£¬Äܹ¹³ÉµÈ±ßÈý½ÇÐεĸÅÂÊÊǶàÉÙ£¿
·ÖÎö£º£¨1£©¸ù¾Ý¶þ´Î¸ùʽµÄÐÔÖÊ£¬ÈκηÇÁãÊýµÄÁã´ÎÃݵÈÓÚ1£¬¸ºÕûÊýÖ¸Êý´ÎÃݵÈÓÚÕýÕûÊýÖ¸Êý´ÎÃݵĵ¹Êý£¬30¡ã½ÇµÄÓàÏÒµÈÓÚ
½øÐмÆËã¼´¿ÉµÃ½â£»
£¨2£©ÏȰÑÀ¨ºÅÄڵķÖʽͨ·Ö²¢½øÐмӷ¨ÔËË㣬ÔÙ¸ù¾Ý³ýÒÔÒ»¸öÊýµÈÓÚ³ËÒÔÕâÊýµÄµ¹Êý°Ñ³ý·¨×ª»¯Îª³Ë·¨£¬Ô¼·Öºó°ÑxµÄÖµ´úÈë½øÐмÆËã¼´¿ÉµÃ½â£»
£¨3£©»³öÊ÷״ͼ£¬¢Ù¸ù¾ÝÈý½ÇÐεÄÈÎÒâÁ½±ßÖ®ºÍ´óÓÚµÚÈý±ßÈ·¶¨³öÄܹ»³ÉΪÈý½ÇÐεÄÇé¿öÊý£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½ÁÐʽ¼ÆËã¼´¿ÉµÃ½â£»
¢ÚÕÒ³ö¹¹³ÉµÈÑüÈý½ÇÐεÄÇé¿öÊý£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½ÁÐʽ¼ÆËã¼´¿ÉµÃ½â£»
¢ÛÕÒ³ö¹¹³ÉµÈ±ßÈý½ÇÐεÄÇé¿öÊý£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½ÁÐʽ¼ÆËã¼´¿ÉµÃ½â£®
| ||
| 2 |
£¨2£©ÏȰÑÀ¨ºÅÄڵķÖʽͨ·Ö²¢½øÐмӷ¨ÔËË㣬ÔÙ¸ù¾Ý³ýÒÔÒ»¸öÊýµÈÓÚ³ËÒÔÕâÊýµÄµ¹Êý°Ñ³ý·¨×ª»¯Îª³Ë·¨£¬Ô¼·Öºó°ÑxµÄÖµ´úÈë½øÐмÆËã¼´¿ÉµÃ½â£»
£¨3£©»³öÊ÷״ͼ£¬¢Ù¸ù¾ÝÈý½ÇÐεÄÈÎÒâÁ½±ßÖ®ºÍ´óÓÚµÚÈý±ßÈ·¶¨³öÄܹ»³ÉΪÈý½ÇÐεÄÇé¿öÊý£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½ÁÐʽ¼ÆËã¼´¿ÉµÃ½â£»
¢ÚÕÒ³ö¹¹³ÉµÈÑüÈý½ÇÐεÄÇé¿öÊý£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½ÁÐʽ¼ÆËã¼´¿ÉµÃ½â£»
¢ÛÕÒ³ö¹¹³ÉµÈ±ßÈý½ÇÐεÄÇé¿öÊý£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½ÁÐʽ¼ÆËã¼´¿ÉµÃ½â£®
½â´ð£º½â£º£¨1£©
-£¨
-1£©0+£¨-
£©-2-4cos30¡ã
=2
-1+4-4¡Á
=2
+3-2
=3£»
£¨2£©
¡Â£¨2+x-
£©
=
¡Â
=
•
=
£¬
µ±x=
ʱ£¬Ôʽ=
=
=
£»
£¨3£©¸ù¾ÝÌâÒ⻳öÊ÷״ͼÈçÏ£º

Ò»¹²ÓÐ12ÖÖÇé¿ö£¬
¸ù¾ÝÈý½ÇÐεÄÈý±ß¹ØÏµ£¬Äܹ¹³ÉÈý½ÇÐεÄÓУ¨3£¬3£¬3£©£¬£¨4£¬3£¬3£©£¬£¨4£¬6£¬3£©£¬£¨4£¬9£¬12£©¹²4ÖÖÇé¿ö£¬
ËùÒÔ£¬¢ÙP£¨¹¹³ÉÈý½ÇÐΣ©=
=
£»
¢ÚP£¨¹¹³ÉµÈÑüÈý½ÇÐΣ©=
=
£»
¢ÛP£¨¹¹³ÉµÈ±ßÈý½ÇÐΣ©=
£®
| 12 |
| 3 |
| 1 |
| 2 |
=2
| 3 |
| ||
| 2 |
=2
| 3 |
| 3 |
=3£»
£¨2£©
| x |
| x-2 |
| 4 |
| 2-x |
=
| x |
| x-2 |
| 4-x2-4 |
| 2-x |
=
| x |
| x-2 |
| x-2 |
| x2 |
=
| 1 |
| x |
µ±x=
| 2 |
| 1 |
| x |
| 1 | ||
|
| ||
| 2 |
£¨3£©¸ù¾ÝÌâÒ⻳öÊ÷״ͼÈçÏ£º
Ò»¹²ÓÐ12ÖÖÇé¿ö£¬
¸ù¾ÝÈý½ÇÐεÄÈý±ß¹ØÏµ£¬Äܹ¹³ÉÈý½ÇÐεÄÓУ¨3£¬3£¬3£©£¬£¨4£¬3£¬3£©£¬£¨4£¬6£¬3£©£¬£¨4£¬9£¬12£©¹²4ÖÖÇé¿ö£¬
ËùÒÔ£¬¢ÙP£¨¹¹³ÉÈý½ÇÐΣ©=
| 4 |
| 12 |
| 1 |
| 3 |
¢ÚP£¨¹¹³ÉµÈÑüÈý½ÇÐΣ©=
| 2 |
| 12 |
| 1 |
| 6 |
¢ÛP£¨¹¹³ÉµÈ±ßÈý½ÇÐΣ©=
| 1 |
| 12 |
µãÆÀ£º±¾Ì⿼²éÁËÁÐ±í·¨ÓëÊ÷״ͼ·¨£¬Óõ½µÄ֪ʶµãΪ£º¸ÅÂÊ=ËùÇóÇé¿öÊýÓë×ÜÇé¿öÊýÖ®±È£¬£¨3£©Òª×¢ÒâµÈ±ßÈý½ÇÐÎÒ²ÊǵÈÑüÈý½ÇÐΣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿