题目内容
用配方法解方程:3x2-2x=0
解:x2-
x=0,
x2-
x+
=
,
=
,
x-
=±
,
x=
±
,
∴x1=
,x2=0.
分析:化二次项系数为1,两边加上一次项系数一半的平方,配成完全平方的形式,再用直接开平方法求出方程的根.
点评:本题考查的是用配方法解一元二次方程,把二次项的系数化为1,两边加上一次项系数一半的平方,把左边化成完全平方的形式,再用直接开平方法求出方程的根.
x2-
x-
x=
∴x1=
分析:化二次项系数为1,两边加上一次项系数一半的平方,配成完全平方的形式,再用直接开平方法求出方程的根.
点评:本题考查的是用配方法解一元二次方程,把二次项的系数化为1,两边加上一次项系数一半的平方,把左边化成完全平方的形式,再用直接开平方法求出方程的根.
练习册系列答案
相关题目
用配方法解方程x2-3x=4,应把方程的两边同时( )
A、加上
| ||
B、加上
| ||
C、减去
| ||
D、减去
|