题目内容
将x5+x4+1因式分解得( )
| A.(x2+x+1)(x3+x+1) | B.(x2-x+1)(x3+x+1) |
| C.(x2-x+1)(x3-x+1) | D.(x2+x+1)(x3-x+1) |
原式=x3(x2+x+1)-(x3-1)
=x3(x2+x+1)-(x-1)(x2+x+1)
=(x2+x+1)(x3-x+1)
故选D.
=x3(x2+x+1)-(x-1)(x2+x+1)
=(x2+x+1)(x3-x+1)
故选D.
练习册系列答案
相关题目