题目内容
一个电子元件接在之间形成通路的概率是,至少需要( )个这样的电子元件并联接到之间,才能保证间成为通路的概率不低于.
A. B. C. D.
已知直角△ABC中,∠C=90°,∠A=30°,AB=4,以AC为腰,在△ABC外作顶角为30°的等腰三角形ACD,连接BD.请画出图形,并直接写出△BCD的面积.
在各个内角都相等的多边形中,一个外角等于一个内角的,则这个多边形的边数是( )
A. 5 B. 6 C. 7 D. 8
口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.3,摸出白球的概率是0.4,那么摸出黑球的概率是_________.
如图所示,小明、小刚利用两个转盘进行游戏;规则为小明将两个转盘各转一次,如配成紫色(红与蓝)得5分,否则小刚得3分,此规则对小明和小刚( )
A. 公平 B. 对小明有利 C. 对小刚有利 D. 不可预测
一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,另有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字1,2,3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.
(1)用树状图法或列表法求出小颖参加比赛的概率;
(2)你认为游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.
课外兴趣小组为了了解所在地区老年人的健康状况,分别做了下列四种不同的抽样调查:
①在公园调查了1000名老年人的健康状况;
②在医院调查了1000名老年人的健康状况;
③调查了10名老年邻居的健康状况;
④利用派出所的户籍网随机调查了该地区10%的老年人的健康状况.
你认为抽样比较合理的是________(填序号).
如图,是一面长米的墙,用总长为米的木栅栏(图中的虚线)围一个矩形场地,中间用栅栏隔成同样三块.若要围成的矩形面积为平方米,则的长为________米.
如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).
(1)求该抛物线所对应的函数解析式;
(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.
①求四边形ACFD的面积;
②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.