题目内容
如图,在梯形ABCD中,AB∥CD,∠C=90°,AB=25,BC=24,若将该梯形沿BD折叠,点C恰好与腰AD上的点E重合,则AE的长为
- A.7
- B.8
- C.10
- D.12
A
分析:由将梯形ABCD沿BD折叠,点C恰好与腰AD上的点E重合,可得:BE=BC=24,∠BED=∠C=90°,又由AB=25,由勾股定理即可求得AE的长.
解答:∵将梯形ABCD沿BD折叠,点C恰好与腰AD上的点E重合,
∴由折叠的性质可得:BE=BC=24,∠BED=∠C=90°,
∴∠AEB=90°,
∵AB=25,
∴AE=
=7.
故选A.
点评:此题考查了折叠的性质以及勾股定理.此题比较简单,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.
分析:由将梯形ABCD沿BD折叠,点C恰好与腰AD上的点E重合,可得:BE=BC=24,∠BED=∠C=90°,又由AB=25,由勾股定理即可求得AE的长.
解答:∵将梯形ABCD沿BD折叠,点C恰好与腰AD上的点E重合,
∴由折叠的性质可得:BE=BC=24,∠BED=∠C=90°,
∴∠AEB=90°,
∵AB=25,
∴AE=
故选A.
点评:此题考查了折叠的性质以及勾股定理.此题比较简单,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.
练习册系列答案
相关题目
| A、3cm | B、7cm | C、3cm或7cm | D、2cm |