题目内容
7.方程组$\left\{\begin{array}{l}{{x}^{2}+2{y}^{2}-2y+2=0}\\{{x}^{2}+2xy+{y}^{2}-x-y-2=0}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$.分析 把第二个方程变形成(x+y-2)(x+y+1)=0,即x+y-2=0或x+y+1=0,分成两种情况进行讨论,利用代入法即可求解.
解答 解:$\left\{\begin{array}{l}{{x}^{2}+2{y}^{2}-2y+2=0…①}\\{{x}^{2}+2xy+{y}^{2}-x-y-2=0…②}\end{array}\right.$,
由②得(x+y)2-(x+y)-2=0,
即(x+y-2)(x+y+1)=0,
则x+y-2=0或x+y+1=0,
当x+y-2=0时,即x=2-y,代入①得(2-y)2+2y2-2y+2=0,即y2-2y+1=0,
解得:y=1.
把y=1代入x=2-y=2-1=1,
则方程组的解是$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$;
当x+y+1=0时,x=-1-y,代入①得(-1-y)2+2y2-2y+2=0,即3y2+3=0,无解.
总之.方程组的解是$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$.
故答案是:$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$.
点评 本题考查了高次方程组的解法,解决的关键是通过适当的方法,把高次方程化为次数较低的方程求解.
练习册系列答案
相关题目
15.
如图,边长为1的正方形ABCD顶点A(0,1),B(1,1);一抛物线y=ax2+bx+c过点M(-1,0)且顶点在正方形ABCD内部(包括在正方形的边上),则a的取值范围是( )
| A. | -2≤a≤-1 | B. | -2≤a≤-$\frac{1}{4}$ | C. | -1≤a≤-$\frac{1}{2}$ | D. | -1≤a≤-$\frac{1}{4}$ |
19.已知等腰直角三角形斜边上的中线为5cm,则以直角边为边的正方形的面积为( )
| A. | 10cm2 | B. | 15cm2 | C. | 50cm2 | D. | 25cm2 |
16.下列计算正确的是( )
| A. | $\sqrt{2}$$•\sqrt{3}$=$\sqrt{5}$ | B. | $\sqrt{2}•\sqrt{3}=\sqrt{6}$ | C. | $\sqrt{8}$=4 | D. | $\sqrt{(-3)^{2}}$=-3 |