题目内容
如图,四边形OABC中,AB∥OC,边OA在x轴的正半轴上,OC在y轴的正半轴上,点B在第一象限内,点D为AB的中点,CD与OB相交于点E,若△BDE、△OCE的面积分别为1和9,反比例函数y=的图象经过点B,则k=_______.
如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为( )
A. 3 B. 6 C. D.
济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(l)杨老师采用的调查方式是 (填“普查”或“抽样调查”);
(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数 .
(3)请估计全校共征集作品的什数.
(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
如图,直线AB∥CD,AF交CD于点E,∠CEF=140°,则∠A等于( )
A.35° B.40° C.45 D. 50°
某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.
(1)求y与x之间的函数关系式;
(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?
如图,在△ABC中,∠ACB=90°,按如下步骤操作:①以点A为圆心,任意长为半径作弧,分别交AC、AB于D、E两点;②以点C为圆心,AD长为半径作弧,交.AC的延长线于点F;③以点F为圆心,DE长为半径作弧,两弧交于点G;④作射线CG,若∠FCG=50°,则∠B为( )
A. 30° B. 40° C. 50° D. 60°
下列运算正确的是( )
A. 2a+3a=5a B. (x-2)2=x2-4 C. (x-2)(x-3)=x2-6 D. a8÷a4=a2
如图:在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,有下列结论:①∠AED=∠CED;②OE=OD;③△BEH≌△HDF;④BC﹣CF=2EH;⑤AB=FH.其中正确的结论有( )
A. 5个 B. 4个 C. 3个 D. 2个
已知:AB=AC,PA=PC,若PA为△ABC的外接圆⊙O的切线
(1) 求证:PC为⊙O的切线;
(2) 连接BP,若sin∠BAC=,求tan∠BPC的值.