题目内容
【题目】如图,将边长为2cm的两个互相重合的正方形纸片按住其中一个不动,另一个绕点B顺时针旋转一个角度α(0°<α<90°),若两正方形重叠部分的面积为
,则这个旋转角度为_____度.
![]()
【答案】30°
【解析】分析:设A′D′与CD的交点为E,连接BE;由于A′B=BC,易证得△A′BE≌△CBE,因此两者的面积相等,即可根据△CBE的面积求得CE的值,从而通过解直角三角形求出∠CBE、∠CBA′的度数,进而可求得旋转角的度数.
详解:设A′D′与CD的交点为E,连接BE.
![]()
∵A′B=BC,BE=BE,
∴Rt△A′BE≌Rt△CBE.(HL)
∴∠A′BE=∠EBC,且S△BA′E=S△BCE=
.
在Rt△BCE中,BC=2,则:
S△BCE=
×2×CE=
,
∴CE=
.
∴tan∠EBC=
,即∠EBC=30°.
∴∠A′BC=2∠EBC=60°,∠ABA′=90°-∠A′BC=30°.
故旋转的角度为30°.
练习册系列答案
相关题目