ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ò»Å×ÎïÏߵĶԳÆÖáΪֱÏßx=1£¬ÓëyÖḺ°ëÖá½»£¨1£©Çó´ËÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÈôµãG£¨2£¬-3£©ÊǸÃÅ×ÎïÏßÉÏÒ»µã£¬µãEÊÇÖ±ÏßAGÏ·½µÄÅ×ÎïÏßÉÏÒ»¶¯µã£¬µ±µãEÔ˶¯µ½Ê²Ã´Î»ÖÃʱ£¬¡÷AEGµÄÃæ»ý×î´ó£¿Çó³ö´ËʱEµãµÄ×ø±êºÍ¡÷AEGµÄ×î´óÃæ»ý£»
£¨3£©ÈôƽÐÐÓÚxÖáµÄÖ±ÏßÓë¸ÃÅ×ÎïÏß½»ÓÚM¡¢NÁ½µã£¨ÆäÖеãMÔÚµãNµÄÓҲࣩ£¬ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹¡÷MNQΪµÈÑüÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÇó³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾ÝÅ×ÎïÏߵĶԳÆÖá·½³Ì¼°Bµã×ø±ê£¬¿ÉÇóµÃAµã×ø±ê£¬ÔÙÓôý¶¨ÏµÊý·¨Çó³öÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¿É·Ö±ð¹ýE¡¢G×÷xÖáµÄ´¹Ïߣ¬Éè´¹×ãΪF¡¢H£»ÄÇô¡÷AGEµÄÃæ»ý=¡÷AEFµÄÃæ»ý+ËıßÐÎFHGEµÄÃæ»ý-¡÷AGHµÄÃæ»ý£¬Éè³öEµãµÄ×ø±ê£¬¼´¿É±íʾ³öFµã×ø±ê¼°EFµÄ³¤£¬¸ù¾ÝÉÏÃæËùµÃ³öµÄÃæ»ý¼ÆËã·½·¨£¬¿ÉµÃ³ö¹ØÓÚ¡÷AGEµÄÃæ»ýÓëEµãºá×ø±êµÄº¯Êý¹ØÏµÊ½£¬¸ù¾ÝËùµÃº¯ÊýµÄÐÔÖÊ£¬¼´¿ÉÇó³ö¡÷AGEµÄ×î´óÃæ»ý¼°¶ÔÓ¦µÄEµã×ø±ê£»
£¨3£©·ÖÁ½ÖÖÇé¿öÌÖÂÛ£º
¢ÙÒÔMNΪб±ß£¬ÔòQµãÔÚMNµÄ´¹Ö±Æ½·ÖÏßÉÏ£¬¼´QµãΪÅ×ÎïÏß¶Ô³ÆÖáÓëxÖá½»µã£¬Óɴ˿ɵóöQµã×ø±ê£»
¢ÚÒÔMNΪֱ½Ç±ß£»Éè³öM¡¢NµÄ×ø±ê£¬¿É±íʾ³öMNµÄ³¤£¬ÓÉÓÚ¡÷MNQÊǵÈÑüRt¡÷£¬ÔòMNµÄ³¤ÓëM¡¢NµÄ×Ý×ø±êµÄ¾ø¶ÔÖµÏàͬ£¬ÓÉ´Ë¿ÉÇó³öM¡¢NµÄ×ø±ê£¬Ò²¾ÍÇó³öÁËQµãµÄ×ø±ê£®
£¨2£©¿É·Ö±ð¹ýE¡¢G×÷xÖáµÄ´¹Ïߣ¬Éè´¹×ãΪF¡¢H£»ÄÇô¡÷AGEµÄÃæ»ý=¡÷AEFµÄÃæ»ý+ËıßÐÎFHGEµÄÃæ»ý-¡÷AGHµÄÃæ»ý£¬Éè³öEµãµÄ×ø±ê£¬¼´¿É±íʾ³öFµã×ø±ê¼°EFµÄ³¤£¬¸ù¾ÝÉÏÃæËùµÃ³öµÄÃæ»ý¼ÆËã·½·¨£¬¿ÉµÃ³ö¹ØÓÚ¡÷AGEµÄÃæ»ýÓëEµãºá×ø±êµÄº¯Êý¹ØÏµÊ½£¬¸ù¾ÝËùµÃº¯ÊýµÄÐÔÖÊ£¬¼´¿ÉÇó³ö¡÷AGEµÄ×î´óÃæ»ý¼°¶ÔÓ¦µÄEµã×ø±ê£»
£¨3£©·ÖÁ½ÖÖÇé¿öÌÖÂÛ£º
¢ÙÒÔMNΪб±ß£¬ÔòQµãÔÚMNµÄ´¹Ö±Æ½·ÖÏßÉÏ£¬¼´QµãΪÅ×ÎïÏß¶Ô³ÆÖáÓëxÖá½»µã£¬Óɴ˿ɵóöQµã×ø±ê£»
¢ÚÒÔMNΪֱ½Ç±ß£»Éè³öM¡¢NµÄ×ø±ê£¬¿É±íʾ³öMNµÄ³¤£¬ÓÉÓÚ¡÷MNQÊǵÈÑüRt¡÷£¬ÔòMNµÄ³¤ÓëM¡¢NµÄ×Ý×ø±êµÄ¾ø¶ÔÖµÏàͬ£¬ÓÉ´Ë¿ÉÇó³öM¡¢NµÄ×ø±ê£¬Ò²¾ÍÇó³öÁËQµãµÄ×ø±ê£®
½â´ð£º½â£º£¨1£©¡ßÅ×ÎïÏߵĶԳÆÖáΪx=1£¬ÇÒB£¨3£¬0£©£¬
¡àA£¨-1£¬0£©£»
¿ÉÉèÅ×ÎïÏߵĽâÎöʽΪ£ºy=a£¨x-3£©£¨x+1£©£¬ÔòÓУº
£¨-3£©¡Á1¡Áa=-3£¬a=1£»
¡ày=x2-2x-3£¨4·Ö£©
£¨2£©µ±EÔ˶¯µ½(
£¬-
)ʱÓÐ×î´óÃæ»ý£¬×î´óÃæ»ýÊÇ
£¬ÀíÓÉÈçÏ£º
¹ýE×÷EF¡ÍxÖáÓÚF£¬¹ýG×÷GH¡ÍxÖáÓÚH£»
ÉèE£¨x0£¬y0£©£¬ÔòF£¨x0£¬0£©£¬EF=-£¨x02-2x0-3£©
ÒòΪG£¨2£¬-3£©ËùÒÔGH=3
S¡÷AEF=
y0£¬S¡÷AGH=
=
SËıßÐÎFHGE=
=
ËùÒÔS¡÷AGE=S¡÷AEF+SËıßÐÎFHGE-S¡÷AGH=-
x02+
x0+3=-
(x0-
)2+
£¨6·Ö£©
µ±x0=
ʱ£¬ÓÐ×î´óֵΪ
£»£¨7·Ö
½«x0=
´úÈëy=x2-2x-3£¬
µÃy0=-
£»
ËùÒÔE(
£¬-
)£»£¨8·Ö£©
£¨3£©´æÔÚ£¬Q£¨1£¬0£©»ò£¨¡À
£¬0£©»ò£¨2¡À
£¬0£©ÀíÓÉÈçÏ£¨9·Ö£©
ÒòΪMNƽÐÐÓëxÖᣬ
ËùÒÔM¡¢N¹ØÓÚx=1¶Ô³Æ
¢ÙÈôNQ=QM£¬ÔòQ±ØÔÚMNµÄÖд¹Ïß¼´¶Ô³ÆÖáx=1ÉÏ£¬ËùÒÔQ£¨1£¬0£©£¨10·Ö£©
¢ÚÈôQN=MN£¬Ôò¡ÏQMN=90¡ã£¬ÉèM£¨m1£¬n1£©
ÔòÓУºN£¨2-m1£¬n1£©£¬MN=m1-£¨2-m1£©=2m1-2
QN=|n1|£¬
ËùÒÔ|n1|=2m1-2£¬ÆäÖÐn1=m12-2m1-3
ͬÀíÈôQM=MN£¬QM=|n1|£¬n1=m12-2m1-3£¬
×ÛÉϿɵÃ|n1|=2m1-2
½âµÃm1=
»ò-
»ò2+
»ò2-
£»£¨12·Ö£©
¡àQ1£¨
£¬0£©£¬Q2£¨-
£¬0£©£¬Q3£¨2+
£¬0£©£¬Q4£¨2-
£¬0£©£®
×ÛÉÏËùÊö£¬´æÔÚ·ûºÏÌõ¼þµÄQµã£¬
ÇÒ×ø±êΪ£ºQ1£¨
£¬0£©£¬Q2£¨-
£¬0£©£¬Q3£¨2+
£¬0£©£¬Q4£¨2-
£¬0£©£¬Q5£¨1£¬0£©£®
¡àA£¨-1£¬0£©£»
¿ÉÉèÅ×ÎïÏߵĽâÎöʽΪ£ºy=a£¨x-3£©£¨x+1£©£¬ÔòÓУº
£¨-3£©¡Á1¡Áa=-3£¬a=1£»
¡ày=x2-2x-3£¨4·Ö£©
£¨2£©µ±EÔ˶¯µ½(
| 1 |
| 2 |
| 15 |
| 4 |
| 27 |
| 8 |
¹ýE×÷EF¡ÍxÖáÓÚF£¬¹ýG×÷GH¡ÍxÖáÓÚH£»
ÉèE£¨x0£¬y0£©£¬ÔòF£¨x0£¬0£©£¬EF=-£¨x02-2x0-3£©
ÒòΪG£¨2£¬-3£©ËùÒÔGH=3
S¡÷AEF=
| -(x0+1) |
| 2 |
| AM•MH |
| 2 |
| 9 |
| 2 |
SËıßÐÎFHGE=
| (MH+EF)HF |
| 2 |
| x0y0-3x0-2y0+6 |
| 2 |
ËùÒÔS¡÷AGE=S¡÷AEF+SËıßÐÎFHGE-S¡÷AGH=-
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 27 |
| 8 |
µ±x0=
| 1 |
| 2 |
| 27 |
| 8 |
½«x0=
| 1 |
| 2 |
µÃy0=-
| 15 |
| 4 |
ËùÒÔE(
| 1 |
| 2 |
| 15 |
| 4 |
£¨3£©´æÔÚ£¬Q£¨1£¬0£©»ò£¨¡À
| 5 |
| 5 |
ÒòΪMNƽÐÐÓëxÖᣬ
ËùÒÔM¡¢N¹ØÓÚx=1¶Ô³Æ
¢ÙÈôNQ=QM£¬ÔòQ±ØÔÚMNµÄÖд¹Ïß¼´¶Ô³ÆÖáx=1ÉÏ£¬ËùÒÔQ£¨1£¬0£©£¨10·Ö£©
¢ÚÈôQN=MN£¬Ôò¡ÏQMN=90¡ã£¬ÉèM£¨m1£¬n1£©
QN=|n1|£¬
ËùÒÔ|n1|=2m1-2£¬ÆäÖÐn1=m12-2m1-3
ͬÀíÈôQM=MN£¬QM=|n1|£¬n1=m12-2m1-3£¬
×ÛÉϿɵÃ|n1|=2m1-2
½âµÃm1=
| 5 |
| 5 |
| 5 |
| 5 |
¡àQ1£¨
| 5 |
| 5 |
| 5 |
| 5 |
×ÛÉÏËùÊö£¬´æÔÚ·ûºÏÌõ¼þµÄQµã£¬
ÇÒ×ø±êΪ£ºQ1£¨
| 5 |
| 5 |
| 5 |
| 5 |
µãÆÀ£º´ËÌ⿼²éÁ˶þ´Îº¯Êý½âÎöʽµÄÈ·¶¨¡¢Í¼ÐÎÃæ»ýµÄÇ󷨡¢¶þ´Îº¯ÊýµÄÓ¦ÓᢵÈÑüÖ±½ÇÈý½ÇÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£¬×ÛºÏÐÔÇ¿£¬ÄÜÁ¦ÒªÇó½Ï¸ß£®¿¼²éѧÉú·ÖÀàÌÖÂÛ£¬ÊýÐνáºÏµÄÊýѧ˼Ïë·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿