题目内容
如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第10个图案中的基础图形个数为_____.
一次函数y =kx+2+k与y轴的交点在原点上方(不与原点重合),则k的取值范围是_______.
如图,把一张对边平行的纸条如图折叠,重合部分是 ( )
A. 等边三角形 B. 等腰三角形 C. 直角三角形 D. 无法确定
如图,已知∠ABC=∠DCB,添加一个条件,使△ABC≌△DCB,你添加的条件是_____.(注:只需写出一个条件即可)
化简求值:2x2y﹣[3xy2+2(xy2+2x2y)],其中 x=,y=﹣2.
数轴上的 A 点与表示﹣3 的点距离 4 个单位长度,则 A 点表示 的数为_____.
长城总长约为6700010米,用科学记数法表示是(保留两个有效数字)
A、6.7×105米 B、6.7×106米 C、6.7×107米 D、6.7×108米
在平面直角坐标系中,如图所示的函数图象是由函数y=(x﹣1)2+1(x≥0)的图象C1和图象C2组成中心对称图形,对称中心为点(0,2).已知不重合的两点A、B分别在图象C1和C2上,点A、B的横坐标分别为a、b,且a+b=0.当b<x≤a时该函数的最大值和最小值均与a、b的值无关,则a的取值范围为_____.
如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.
(1)求经过B、E、C三点的抛物线的解析式;
(2)判断△BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.