题目内容
已知抛物线的对称轴为x=2,且经过点(1,4)和(5,0),试求该抛物线的表达式。
某公司销售某一种新型通讯产品,已知每件产品的进价为4万元,每月销售该种产品的总开支(不含进价)总计11万元.在销售过程中发现,月销售量夕(件)与销售单价x (万元)之间存在着如图所示的一次函数关系、
(1)求y关于x的函数关系式(直接写出结果)
(2)试写出该公司销售该种产品的月获利z(万元)关于销售单价x(万元)的函数关系式、当销售单价x为何值时,月获利最大?并求这个最大值(月获利一月销售额一月销售产品总进价一月总开支)
(3)若公司希望该产品一个月的销售获利不低于5万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少万元
若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x﹣2)2+1=0的实数根为( )
A. x1=0,x2=4 B. x1=﹣2,x2=6 C. x1=,x2= D. x1=﹣4,x2=0
若A是一个三次多项式,B是一个四次多项式,则A+B一定是( )
A. 三次多项式 B. 四次多项式或单项式 C. 七次多项式 D. 四次七项式
已知抛物线y=ax2+bx经过(2,0),(-1,6).
(1)求这条抛物线的表达式;
(2)写出抛物线的开口方向、对称轴和顶点坐标.
已知∠AOB=90°,OC是∠AOB的平分线,按以下要求解答问题.
(1)将三角板的直角顶点P在射线OC上移动,两直角边分别与OA,OB交于M,N,如图①,求证:PM=PN;
(2)将三角板的直角顶点P在射线OC上移动,一条直角边与OB交于N,另一条直角边与射线OA的反向延长线交于点M,并猜想此时①中的结论PM=PN是否成立,并说明理由 .
如图,有一个直角△ABC,∠C=90°,AC=6,BC=3,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问:当AP=________时,才能使以点P、A、Q为顶点的三角形与△ABC全等.
分别写出下列二次函数的对称轴和顶点坐标.
(1) ;
(2) .
我市南湖生态城某楼盘准备以每平方米元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米元的均价开盘销售.
求平均每次下调的百分率;
王先生准备以开盘价均价购买一套平方米的住房,开发商给予以下两种优惠方案:
①打折销售;
②不打折,一次性送装修费每平方米元,试问那种方案更优惠?