题目内容
计算:
(1)计算:-12+(-2)3×
-
×(-
);
(2)计算:(2+1)(22+1)(24+1)…(2128+1)+1;
(3)先化简,再求值.[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=5,y=2.
(1)计算:-12+(-2)3×
| 1 |
| 8 |
| 3 | -27 |
|
(2)计算:(2+1)(22+1)(24+1)…(2128+1)+1;
(3)先化简,再求值.[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=5,y=2.
分析:(1)先算乘方,再算乘法,再合并同类项即可.
(2)根据平方差公式进行计算即可.
(3)先算乘方和乘法,再合并,最后算除法,代入求出即可.
(2)根据平方差公式进行计算即可.
(3)先算乘方和乘法,再合并,最后算除法,代入求出即可.
解答:解:(1)原式=-1+(-8)×
-(-3)×(-
)
=-1-1-1
=-3;
(2)原式=(2-1)(2+1)(22+1)(24+1)…(2128+1)+1.
=(22-1)(22+1)(24+1)…(2128+1)+1.
=(24-1)(24+1)…(2128+1)+1.
=(28-1)…(2128+1)+1.
=2256-1+1
=2256;
(3)[(x+2y)(x-2y)-(x+4y)2]÷4y
=(x2-4y2-x2-8xy-16y2)÷4y
=(-8xy-20y2)÷4y
=-2x-5y
当x=5,y=2时,
原式=-2×5-5×2=-20.
| 1 |
| 8 |
| 1 |
| 3 |
=-1-1-1
=-3;
(2)原式=(2-1)(2+1)(22+1)(24+1)…(2128+1)+1.
=(22-1)(22+1)(24+1)…(2128+1)+1.
=(24-1)(24+1)…(2128+1)+1.
=(28-1)…(2128+1)+1.
=2256-1+1
=2256;
(3)[(x+2y)(x-2y)-(x+4y)2]÷4y
=(x2-4y2-x2-8xy-16y2)÷4y
=(-8xy-20y2)÷4y
=-2x-5y
当x=5,y=2时,
原式=-2×5-5×2=-20.
点评:本题考查了平方差公式,完全平方公式,有理数的混合运算,整式的混合运算和求值的应用,主要考查学生的计算能力.
练习册系列答案
相关题目
(2004•遂宁)某校组织学生到涪江河某段测量两岸的距离,采用了两种方案收集数据.
方案一:如图,从C点找准对岸一参照点D,使CD垂直于河岸线l,沿河岸行走至E点,测出CE的长度后,再用电子测角器测出CE与ED的夹角α;
方案二:如图,先从河岸上选一点A,测出A到河面的距离h.再用电子测角器测出A点到对岸河面的俯角β.

(1)学生们选用不同的位置测量后得出以下数据,请通过计算填写下表:(精确到0.1米)
方案一:
方案二:
(参考数据:tan1°24′=0.0244、tan2°16′=0.0396、tan1°56′=0.0338、tan76°33′=4.1814、tan71°35′=3.0032、tan65°25′=2.1859)
(2)由(1)表中数据计算:
方案一中河两岸平均宽为______米;
方案二中河两岸平均宽为______米;
(3)判断河两岸宽大约为______米;(从下面三个答案中选取,填入序号)
①390~420 ②420~450 ③350~480
(4)求出方案一的方差S12和方案二的方差S22,判断用哪种方案测量的误差较小.(精确到1)
方案一:如图,从C点找准对岸一参照点D,使CD垂直于河岸线l,沿河岸行走至E点,测出CE的长度后,再用电子测角器测出CE与ED的夹角α;
方案二:如图,先从河岸上选一点A,测出A到河面的距离h.再用电子测角器测出A点到对岸河面的俯角β.
(1)学生们选用不同的位置测量后得出以下数据,请通过计算填写下表:(精确到0.1米)
方案一:
| 测量次数 | 1 | 2 | 3 |
| EC(单位:米) | 100 | 150 | 200 |
| α | 76°33′ | 71°35′ | 65°25′ |
| 计算得出河宽 (单位:米) |
| 测量次数 | 1 | 2 | 3 |
| EC(单位:米) | 14.4 | 13.8 | 12.5 |
| β | 1°24′ | 2°16′ | 1°56′ |
| 计算得出河宽 (单位:米) |
(2)由(1)表中数据计算:
方案一中河两岸平均宽为______米;
方案二中河两岸平均宽为______米;
(3)判断河两岸宽大约为______米;(从下面三个答案中选取,填入序号)
①390~420 ②420~450 ③350~480
(4)求出方案一的方差S12和方案二的方差S22,判断用哪种方案测量的误差较小.(精确到1)
(2004•遂宁)某校组织学生到涪江河某段测量两岸的距离,采用了两种方案收集数据.
方案一:如图,从C点找准对岸一参照点D,使CD垂直于河岸线l,沿河岸行走至E点,测出CE的长度后,再用电子测角器测出CE与ED的夹角α;
方案二:如图,先从河岸上选一点A,测出A到河面的距离h.再用电子测角器测出A点到对岸河面的俯角β.

(1)学生们选用不同的位置测量后得出以下数据,请通过计算填写下表:(精确到0.1米)
方案一:
方案二:
(参考数据:tan1°24′=0.0244、tan2°16′=0.0396、tan1°56′=0.0338、tan76°33′=4.1814、tan71°35′=3.0032、tan65°25′=2.1859)
(2)由(1)表中数据计算:
方案一中河两岸平均宽为______米;
方案二中河两岸平均宽为______米;
(3)判断河两岸宽大约为______米;(从下面三个答案中选取,填入序号)
①390~420 ②420~450 ③350~480
(4)求出方案一的方差S12和方案二的方差S22,判断用哪种方案测量的误差较小.(精确到1)
方案一:如图,从C点找准对岸一参照点D,使CD垂直于河岸线l,沿河岸行走至E点,测出CE的长度后,再用电子测角器测出CE与ED的夹角α;
方案二:如图,先从河岸上选一点A,测出A到河面的距离h.再用电子测角器测出A点到对岸河面的俯角β.
(1)学生们选用不同的位置测量后得出以下数据,请通过计算填写下表:(精确到0.1米)
方案一:
| 测量次数 | 1 | 2 | 3 |
| EC(单位:米) | 100 | 150 | 200 |
| α | 76°33′ | 71°35′ | 65°25′ |
| 计算得出河宽 (单位:米) |
| 测量次数 | 1 | 2 | 3 |
| EC(单位:米) | 14.4 | 13.8 | 12.5 |
| β | 1°24′ | 2°16′ | 1°56′ |
| 计算得出河宽 (单位:米) |
(2)由(1)表中数据计算:
方案一中河两岸平均宽为______米;
方案二中河两岸平均宽为______米;
(3)判断河两岸宽大约为______米;(从下面三个答案中选取,填入序号)
①390~420 ②420~450 ③350~480
(4)求出方案一的方差S12和方案二的方差S22,判断用哪种方案测量的误差较小.(精确到1)
(2004•遂宁)某校组织学生到涪江河某段测量两岸的距离,采用了两种方案收集数据.
方案一:如图,从C点找准对岸一参照点D,使CD垂直于河岸线l,沿河岸行走至E点,测出CE的长度后,再用电子测角器测出CE与ED的夹角α;
方案二:如图,先从河岸上选一点A,测出A到河面的距离h.再用电子测角器测出A点到对岸河面的俯角β.

(1)学生们选用不同的位置测量后得出以下数据,请通过计算填写下表:(精确到0.1米)
方案一:
方案二:
(参考数据:tan1°24′=0.0244、tan2°16′=0.0396、tan1°56′=0.0338、tan76°33′=4.1814、tan71°35′=3.0032、tan65°25′=2.1859)
(2)由(1)表中数据计算:
方案一中河两岸平均宽为______米;
方案二中河两岸平均宽为______米;
(3)判断河两岸宽大约为______米;(从下面三个答案中选取,填入序号)
①390~420 ②420~450 ③350~480
(4)求出方案一的方差S12和方案二的方差S22,判断用哪种方案测量的误差较小.(精确到1)
方案一:如图,从C点找准对岸一参照点D,使CD垂直于河岸线l,沿河岸行走至E点,测出CE的长度后,再用电子测角器测出CE与ED的夹角α;
方案二:如图,先从河岸上选一点A,测出A到河面的距离h.再用电子测角器测出A点到对岸河面的俯角β.
(1)学生们选用不同的位置测量后得出以下数据,请通过计算填写下表:(精确到0.1米)
方案一:
| 测量次数 | 1 | 2 | 3 |
| EC(单位:米) | 100 | 150 | 200 |
| α | 76°33′ | 71°35′ | 65°25′ |
| 计算得出河宽 (单位:米) |
| 测量次数 | 1 | 2 | 3 |
| EC(单位:米) | 14.4 | 13.8 | 12.5 |
| β | 1°24′ | 2°16′ | 1°56′ |
| 计算得出河宽 (单位:米) |
(2)由(1)表中数据计算:
方案一中河两岸平均宽为______米;
方案二中河两岸平均宽为______米;
(3)判断河两岸宽大约为______米;(从下面三个答案中选取,填入序号)
①390~420 ②420~450 ③350~480
(4)求出方案一的方差S12和方案二的方差S22,判断用哪种方案测量的误差较小.(精确到1)