题目内容

13.(1)如图1,在线段AB上取一点C(BC>AC),分别以AC、BC为边在同一侧作等边ACD与等边BCE,连结AE、BD,则ACE经过怎样的变换(平移、轴对称、旋转)能得到DCB?请写出具体的变换过程;(不必写理由)
(2)如图2,在线段AB上取一点C(BC>AC),如果以AC、BC为边在同一侧作正方形ACDG与正方形CBEF,连结EG,取EG的中点M,设 DM的延长线交EF于N,并且DG=NE;请探究DM与FM的关系,并加以证明;
(3)在图2的基础上,将正方形CBEF绕点C顺时针旋转(如图3),使得A、C、E在同一条直线上,请你继续探究线段MD、MF的关系,并加以证明.

分析 (1)容易根据已知条件证明△ACE≌△DCE,所以△ACE绕点C顺时针旋转60°后能得到△DCB;
(2)相等且垂直.根据已知得到DG=NE,MG=ME,而根据已知NB∥GD,现在就可以证明△MGD≌△MEN,从而得到DM=NM,而∠DFN=90°,从而得到FM=$\frac{1}{2}$DN=DM,而NE=GD,GD=CD,可以推出NE=CD,∴FN=FD,可以得到FM⊥DM,所以DM与FM相等且垂直;
(3)相等且垂直.延长DM交CE于N,连接DF、FN,先证△MGD≌△MNE,可以得到DM=NM,NE=DG,再根据正方形的性质和全等三角形的性质可以得到DC=DG=NE,FC=FE,现在可以证明△DCF≌△NEF,然后利用全等三角形的性质就可以证FM=DM,FM⊥DM.

解答 解:(1)将△ACE绕点C顺时针旋转60°后能得到△DCB;理由如下:
∵△ACD和△BCE是等边三角形,
∴AC=CD,CE=CA,∠ACD=∠BCE=60°,
∴∠ACE=∠DCB,
在△ACE和△DCB中,$\left\{\begin{array}{l}{AC=DC}&{\;}\\{∠ACE=∠DCB}&{\;}\\{CE=CA}&{\;}\end{array}\right.$,
∴△ACE≌△DCB(SAS),
∴将△ACE绕点C顺时针旋转60°后能得到△DCB;

(2)如图,相等且垂直.理由如下:
∵EF∥GD,
∴∠NEM=∠DGM,
在△MGD和△MEN中,$\left\{\begin{array}{l}{GD=EN}&{\;}\\{∠NEM=∠DGM}&{\;}\\{EM=GM}&{\;}\end{array}\right.$,
∴△MGD≌△MEN(SAS),
∴DM=NM,
在Rt△DNF中,FM=$\frac{1}{2}$DN=DM,
∵NE=GD,GD=CD,
∴NE=CD,
∴FN=FD,
即FM⊥DM,
∴DM与FM相等且垂直.

(3)MD与MF相等且垂直.理由如下:
延长DM交CE于N,连接DF、FN,如图所示:
根据(2)可以得到△MGD≌△MNE,
∴DM=NM,NE=DG,
∵∠DCF=∠FEN=45°,DC=DG=NE,FC=FE,
∴在△DCF和△NEF中,$\left\{\begin{array}{l}{DC=NE}&{\;}\\{∠DCF=∠FEN}&{\;}\\{FC=FE}&{\;}\end{array}\right.$,
∴△DCF≌△NEF(SAS),
∴DF=FN,∠DFC=∠NFE,
∴∠DFN=90°,
即△FDN为等腰直角三角形,
∵DM=NM,即FM为斜边DN的中线,
∴FM=DM=NM=$\frac{1}{2}$DN,且FM⊥DN,
则FM=DM,FM⊥DM.

点评 此题是四边形综合题目,考查了全等三角形的判定与性质、正方形的性质、等边三角形的性质、等腰直角三角形的判定与性质、直角三角形的性质等知识;本题综合性强,有一定难度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网