题目内容
(本题满分8分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.
(1)求证:BD=EC;
(2)若∠E=50°,求∠BAO的大小.
如图,在等边三角形ABC中,AB=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,当四边形AEFC是平行四边形时,运动时间t的值为 ( )
A.2s B.6s C.8s D.2s或6s
(本题8分)(1)甲、乙、丙三只不透明的口袋中都装有1个白球、1个红球,它们除颜色外都相同,搅匀后分别从三只口袋中任意摸出1个球,请用树状图或列表法求出从三只口袋摸出的都是红球的概率.
(2)甲、乙、丙、丁四位同学分别站在正方形场地的四个顶点A、B、C、D处,每个人都以相同的速度沿着正方形的边同时出发随机走向相邻的顶点处,那么甲、乙、丙、丁四位同学互不相遇的概率是 .
① ② ③ ④
为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区户家庭一周垃圾袋的使用量,结果如下:,,,,,,,,,(单位:个).关于这组数据,下列结论正确的是( ).
A.极差是 B.众数是 C.中位数是 D.平均数是
(本题满分10分)如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.
(1)求点M、A、B坐标;
(2)连结AB、AM、BM,求∠ABM的正切值;
(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.
已知:m、n为两个连续的整数,且m<<n,则m+n= .
如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为( ).
A.4 B.4﹣ C.3 D.6﹣2
如图,在一张长为6cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为_____cm2.
(本题满分9分)如图,已知正方形ABCD,点E是边AB上一点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连结OM、ON、BM、BN.
求证:(1)△AOM∽△DMN; (2)求∠MBN的度数.