题目内容
一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )
A. B. C. D.
已知样本:3,4,0,﹣2,6,1,那么这个样本的方差是_____.
如图,PA、PB是⊙O的切线,切点分别为A、B两点,点C在⊙O上,如果ACB=70°,那么∠P的度数是 ▲ .
如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.
(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;
(2)将线段绕点逆时针旋转90°得到线段.画出线段;
(3)以为顶点的四边形的面积是 个平方单位.
如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间部分的长度和为y,则y关于x的函数图象大致为( )
已知等腰三角形的两边长分别为a,b,且a,b满足|2a-3b+5|+(2a+3b-13)2=0,求此等腰三角形的周长.
如图,在△ABC中,BE平分,过点E作DE∥BC,交AB于点D,若AE=3cm,△ADE的周长为10cm,则AB=______
已知,四边形ABCD是正方形,∠MAN=45°,它的两边AM、AN分别交CB、DC与点M、N,连结MN,作AH⊥MN,垂足为点H
(1)如图1,猜想AH与AB有什么数量关系?并证明;
(2)如图2,已知∠BAC=45°,AD⊥BC于点D,且BD=2,CD=3,求AD的长;
小萍同学通过观察图①发现,△ABM和△AHM关于AM对称,△AHN和△ADN关于AN对称,于是她巧妙运用这个发现,将图形如图③进行翻折变换,解答了此题.你能根据小萍同学的思路解决这个问题吗?
将抛物线y=2x2+4x-5的图象向左平移2个单位,再向上平移1个单位,所得抛物线表达式是( )
A. y=2(x+1)2-7 B. y=2(x+1)2-6
C. y=2(x+3)2-6 D. y=2(x-1)2-6