题目内容
观察:
+
=(1-
)+(
-
)=1-
=
,
+
+
=(1-
)+(
-
)+(
-
)=1-
=
(1)计算
+
+
+…+
;
(2)若
+
+
+…+
=
,求n的值.
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
(1)计算
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 99×100 |
(2)若
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 2n(2n+2) |
| 1001 |
| 4008 |
分析:(1)根据上面的规律先将原式展开,再计算即可;
(2)原等式变形为
(
-
+
-
+
-
+…+
-
)=
,再进行求解即可.
(2)原等式变形为
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 6 |
| 1 |
| 8 |
| 1 |
| 2n |
| 1 |
| 2n+2 |
| 1001 |
| 4008 |
解答:解:(1)原式=1-
+
-
+
-
+…+
-
=1-
=
;
(2)原式变形为:
(
-
+
-
+
-
+…+
-
)=
,
整理得,
(
-
)=
,
-
=
,
去分母得,1002(n+1)-1002=1001((n+1)
移项得,1002(n+1)-1001(n+1)=1002,
合并得n=1001,
经检验,n=1001是原方程的解,
则n=1001.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 99 |
| 1 |
| 100 |
=1-
| 1 |
| 100 |
=
| 99 |
| 100 |
(2)原式变形为:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 6 |
| 1 |
| 8 |
| 1 |
| 2n |
| 1 |
| 2n+2 |
| 1001 |
| 4008 |
整理得,
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2n+2 |
| 1001 |
| 4008 |
| 1 |
| 2 |
| 1 |
| 2n+2 |
| 1001 |
| 2004 |
去分母得,1002(n+1)-1002=1001((n+1)
移项得,1002(n+1)-1001(n+1)=1002,
合并得n=1001,
经检验,n=1001是原方程的解,
则n=1001.
点评:本题是一道规律题,考查了分式的加减,是基础知识比较简单.
练习册系列答案
相关题目