题目内容
【题目】如图,在正方形ABCD的外侧,作等边△ADE,AC、BE相交于点F,则∠EFC为( )
![]()
A.135°B.145°C.120°D.165°
【答案】C
【解析】
由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出∠BFC,即可求出∠EFC.
解:∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,∠BAF=45°,
∵△ADE是等边三角形,
∴∠DAE=60°,AD=AE,
∴∠BAE=90°+60°=150°,AB=AE,
∴∠ABE=∠AEB=
(180°﹣150°)=15°,
∴∠BFC=∠BAF+∠ABE=45°+15°=60°,
∴∠EFC=180°﹣∠BFC=120°;
故选:C.
练习册系列答案
相关题目
【题目】某商场的运动服装专柜,对
两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.
第一次 | 第二次 | |
| 20 | 30 |
| 30 | 40 |
累计采购款/元 | 10200 | 14400 |
(1)问
两种品牌运动服的进货单价各是多少元?
(2)由于
品牌运动服的销量明显好于
品牌,商家决定采购
品牌的件数比
品牌件数的
倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件
品牌运动服?