题目内容


已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B作BD⊥CP于D.

(1)求证:△ACB∽△CDB;

(2)若⊙O的半径为1,∠BCP=30°,求图中阴影部分的面积.


(1)证明:∵直线CP是⊙O的切线,

∴∠BCD=∠BAC,

∵AB是直径,

∴∠ACB=90°,

又∵BD⊥CP

∴∠CDB=90°,

∴∠ACB=∠CDB=90°

∴△ACB∽△CDB;

(2)解:如图,连接OC,

∵直线CP是⊙O的切线,∠BCP=30°,

∴∠COB=2∠BCP=60°,

∴△OCB是正三角形,

∵⊙O的半径为1,

∴S△OCB=,S扇形OCB==π,

∴阴影部分的面积=S扇形OCB﹣S△OCB=π﹣


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网